Abstract:
A method of making a security mesh comprises forming on a conductive substrate an alumina film having through-holes in which metal, e.g., copper, through-wires are formed. First surface wires are formed on one surface of the alumina film and second surface wires are formed on the second, opposite surface of the alumina film in order to connect selected through-wires into a continuous undulating electrical circuit embedded within the alumina film. The security mesh product comprises an alumina film having a continuous undulating electrical circuit comprising copper or other conductive metal extending therethrough. A stacked security mesh comprises two or more of the mesh products being stacked one above the other.
Abstract:
A printed circuit board includes a plurality of layers including attachment layers and routing layers; first and second signal vias forming a differential signal pair, the first and second signal vias extending through the attachment layers and connecting to respective signal traces on a breakout layer of the routing layers; an antipad of a first type around and between the first and second signal vias in one or more of the attachment layers; and antipads of a second type around the first and second signal vias in at least one routing layer adjacent to the breakout layer.
Abstract:
The present invention provides a printed circuit board assembly including a substrate having a plurality of conductive layers vertically sandwiched between a first cap-insulation layer and a second cap-insulation layer. The substrate has a first part, a second part and a third part. For protecting the conductive layers from moisture, each of the areas of the conductive layers corresponding to the second part is smaller than the area of the first cap-insulation layer corresponding to the second part for at least a first predetermined percentage, and each of the areas of the conductive layers corresponding to the second part is smaller than the area of the second cap-insulation layer corresponding to the second part for at least the first predetermined percentage.
Abstract:
An electrical connector that includes a circuit board having a board substrate that has opposite board surfaces and a thickness measured along an orientation axis that extends between the opposite board surfaces. The circuit board has associated pairs of input and output terminals and signal traces that electrically connect the associated pairs of input and output terminals. The input and output terminals being configured to communicatively coupled to mating and cable conductors, respectively. Each associated pair of input and output terminals is electrically connected through a corresponding signal trace that has a conductive path extending along the board substrate between the corresponding input and output terminals. At least two signal traces form a broadside-coupling region in which the conductive paths of the at least two signal traces are stacked along the orientation axis and spaced apart through the thickness and extend parallel to each other for a crosstalk-reducing distance.
Abstract:
A circuit may be configured to reduce electrical signal degradation. The circuit may include a first trace and a second trace that may be broadside coupled between a first ground plane and a second ground plane. The first and second traces may be configured to carry first and second signals, respectively, of a differential signal. The circuit may also include a first dielectric material disposed between the first trace and the second trace. Further, the circuit may include a second dielectric material disposed between the first trace and the first ground plane and disposed between the second trace and the second ground plane. A difference between a first dielectric constant of the first dielectric material and a second dielectric constant of the second dielectric material may suppress a mode conversion of the differential signal from a differential mode to a common mode.
Abstract:
Disclosed herein is a deformation sensing flexible substrate using a pattern formed of a conductive material. The deformation sensing flexible substrate, using the pattern formed of the conductive material, includes a flexible substrate; and conductive patterns in which conductors including a conductive material are arranged and formed to be contactable and non-contact to each other based on deformation of the flexible substrate.
Abstract:
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns comprising: dual diameter first and second signal vias forming a differential signal pair, the first and second signal vias being configured to accept contact tails of signal conductors of a connector; dual diameter ground shadow vias adjacent to each of the first and second signal vias, wherein the dual diameter shadow ground vias have a reversed diameter configuration with respect to the dual diameter first and second signal vias; and ground vias configured to accept contact tails of ground conductors of the connector.
Abstract:
An electrical connector that includes a circuit board having a board substrate that has opposite board surfaces and a thickness measured along an orientation axis that extends between the opposite board surfaces. The circuit board has associated pairs of input and output terminals and signal traces that electrically connect the associated pairs of input and output terminals. The input and output terminals being configured to communicatively coupled to mating and cable conductors, respectively. Each associated pair of input and output terminals is electrically connected through a corresponding signal trace that has a conductive path extending along the board substrate between the corresponding input and output terminals. At least two signal traces form a broadside-coupling region in which the conductive paths of the at least two signal traces are stacked along the orientation axis and spaced apart through the thickness and extend parallel to each other for a crosstalk-reducing distance.
Abstract:
An electrical connector that includes a circuit board having a board substrate that has opposite board surfaces and a thickness measured along an orientation axis that extends between the opposite board surfaces. The circuit board has associated pairs of input and output terminals and signal traces that electrically connect the associated pairs of input and output terminals. The input and output terminals being configured to communicatively coupled to mating and cable conductors, respectively. Each associated pair of input and output terminals is electrically connected through a corresponding signal trace that has a conductive path extending along the board substrate between the corresponding input and output terminals. At least two signal traces form a broadside-coupling region in which the conductive paths of the at least two signal traces are stacked along the orientation axis and spaced apart through the thickness and extend parallel to each other for a crosstalk-reducing distance.
Abstract:
An electrical connector that includes a circuit board having a board substrate that has opposite board surfaces and a thickness measured along an orientation axis that extends between the opposite board surfaces. The circuit board has associated pairs of input and output terminals and signal traces that electrically connect the associated pairs of input and output terminals. The input and output terminals being configured to communicatively coupled to mating and cable conductors, respectively. Each associated pair of input and output terminals is electrically connected through a corresponding signal trace that has a conductive path extending along the board substrate between the corresponding input and output terminals. At least two signal traces form a broadside-coupling region in which the conductive paths of the at least two signal traces are stacked along the orientation axis and spaced apart through the thickness and extend parallel to each other for a crosstalk-reducing distance.