Abstract:
PURPOSE: A phytoncide releasing stent is provided to more efficiently emit phytoncide in a living body. CONSTITUTION: A phytoncide releasing stent comprises a coating layer in which the mixture of phytoncide and biodegradable polymer is coated on the surface thereof. A stent is made of a metal material selected from stainless steel, cobalt-chrome, platinum-chrome, tantalum, titanium, nitinol, gold, platinum, silver, and their alloy. The biodegradable polymer is selected from a group consisting of polyglycolic acid, poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-e-carprolactone, polylactic acid-glycolic acid copolymer, poly-L-lactic acid-e-caprolactone copolymer, polyethylene glycol, polyamino acid, polyanhydride, polyortho ester, polydioxanone, polyphosphazene, cellulose acetate butylate, cellulose triacetate, and their copolymer.
Abstract:
본 발명은 금속 기판에 대한 고분자의 코팅 접착력과 생체 내에서의 상기 고분자의 안정성 및 내구성을 향상시키기 위하여, 금속 기판 표면에 고분자를 나노 커플링(nanocoupling)하는 기술에 관한 것이다. 본 발명에서는 나노 커플링에 의하여 고분자를 금속 기판의 표면에 화학적 결합으로 그라프트함으로써, 이후에 형성되는 고분자 코팅 층의 금속 기판에 대한 접착력과, 생체 내에서의 안정성 및 내구성을 현저하게 향상시킬 수 있다. 따라서 본 발명에 의한 나노 커플링 기술은 금속 기판, 예컨대, 스텐트, 기계식 판막, 관절, 척추, 뼈 및 치과 임플란트 등과 같은 금속 이식물의 표면 개질에 적용이 가능하다. 금속 기판, 금속 이식물, 생분해성 고분자, 나노 커플링, 표면 개질
Abstract:
PURPOSE: A method for preparing a delivery system for supporting physiologically active growth factors which are necessary for cell differentiation and proliferation is provided to maximize stem cell differentiation ability in vitro. CONSTITUTION: A growth factor delivery system comprises a core and shell structure containing two kinds of ingredients which are necessary for cell differentiation or proliferation. The delivery system is in the form of a microsphere of 100-400 um in dianeter. The delivery system is treated with a crosslinking agent of ethyl dimethyl amino propyl carbodiimide, genipin, or glutaraldehyde in the shell. A method for preparing the delivery system comprises: a step of preparing a polymeric microsphere containing a first ingredient needed for cell differentiation or proliferation; and a step of introducing the polymeric microsphere into other polymers containing a second ingredient needed for cell differentiation or proliferation.
Abstract:
본 발명은 생분해성 및 생체친화성이 우수한 조직재생용 주입형 온도감응성 생분해 플루로닉(pluronic) 유도체 하이드로겔 및 이의 제조방법에 관한 것으로, 구체적으로 플루로닉 고분자의 한쪽 또는 양쪽 말단에 생분해성 고분자가 도입되고, 상기 생분해성 고분자에 메타크릴옥시에틸 트라이멜리트산(methacryloxyethyl trimellitic acid) 무수물이 결합되고, 상기 메타크릴옥시에틸 트라이멜리트산 무수물의 카르복실기에 생리활성물질이 중합된 구조를 갖는, 조직재생용 주입형 온도감응성 생분해 플루로닉 유도체 하이드로겔 및 이의 제조방법에 관한 것이다. 본 발명에 따른 플루로닉 유도체 하이드로겔은 플루로닉 고분자의 온도감응성(thermosentitive)은 그대로 유지하면서 생분해성 고분자의 도입으로 인해 생체 내에서 일정 기간 후에 분해되어 배설될 수 있는 생분해성(biodegradability)이 탁월하고, 세포증식성 또는 세포분화성을 향상시킬 수 있는 생리활성물질이 결합되어 있어 생체친화성(biocompatibility)이 우수하기 때문에, 인공조직이나 장기를 조직공학적으로 재생하는데 유용하게 사용될 수 있다. 조직재생, 하이드로겔, 플루로닉 유도체, 생분해성, 생체친화성, 생리활성물질
Abstract:
PURPOSE: A method for preparing biodegradable covered porous polymer microspheres is provided to control a pore size of microspheres, and to prepare porous polymer microspheres capable of ensuring sustained release control and persistence of a sealed drug. CONSTITUTION: A method for preparing biodegradable covered porous polymer microspheres comprises the steps of: dissolving or suspending a bio-active material in a polymer solution that a biodegradable polymer is dissolved in an organic solvent to prepare a polymer solution containing a bio-active material; adding a hydrogen peroxide-containing compound to the polymer solution and mixing the mixture to prepare water-in-oil type emulsion; emulsifying the water-in-oil type emulsion in a emulsion stabilizer solution to prepare oil-in-water type emulsion; and adding a hydrogen peroxide decomposition catalyst to the oil-in-water type emulsion to degrade hydrogen peroxide and evaporate organic solvent.
Abstract:
A photopolymerizable composite material composition for dental service and orthopedics is provided to improve physical properties, mechanical properties and biocompatibility. A photopolymerizable composite material composition comprises 5-95 wt% of an organic matrix component; and 5-95 wt% of an inorganic filler. The organic matrix component comprises 15-80 wt% of a multifunctional methacrylate prepolymer selected from a bifunctional methacrylate prepolymer represented by the formula 2, a trifunctional methacrylate prepolymer represented by the formula 3, a tetrafunctional methacrylate prepolymer represented by the formula 4 and their mixture; 5-50 wt% of a diluent; 1-40 wt% of a polymerization monomer; 0.1-10 wt% of a photoinitiator; and 0.1-10 wt% of other additives, wherein n is a number of 0-2; and R is H, CH3, CH2CH3 or -C(CH3)3.
Abstract:
A method for preparing a biodegradable porous polymer scaffold is provided to produce a biodegradable porous polymer scaffold for tissue engineering, which has no phenomena for pore clogging and harmful substances excretion and remain, and has an open structure with higher surface area and porosity. A method for preparing a biodegradable porous polymer scaffold for tissue engineering comprises the steps of: (a) adding a hydrogen peroxide-containing compound to a polymer solution which is obtained by dissolving a biodegradable polymer into a solvent, and mixing the resulting solution homogeneously; (b) allowing the solution obtained in the step (a) to stand at a temperature of -196 deg.C to a normal temperature so as to evaporate the solvent; and (c) introducing the polymer specimen obtained in the step (b) into an aqueous solution containing a catalyst for decomposition of hydrogen peroxide and foaming the resultant, followed by drying.