Abstract:
A system, method and apparatus provide the ability to detect a chemical in an analyte. To detect the chemical, the invention utilizes a laser having an open cavity. A photonic crystal lattice structure having a defect defines a suitable geometry for such a cavity. The analyte is introduced directly into a high optical field of the cavity. Thereafter, the cavity is pumped and an emission from the laser is used to detect the presence of the chemical in the analyte.
Abstract:
The invention combines (A) capabilities in fabrication, characterization, and manipulation of single domain magnetic nanostructures, with (B) the use of binding chemistry of biological molecules to modify the magnetic nanostructures into magnetic sensors and magnetically controllable nanoprobes. A biological characterization scheme is realized by combining nanomanipulation and observation of small magnetic structures in fluids. By coating nanomagnets with biological molecules, ultra-small, highly sensitive and robust biomagnetic devices are defined, and molecular electronics and spin electronics are combined. When these nano-sensors are integrated into microfluidic channels, highly efficient single-molecule detection chips for rapid diagnosis and analysis of biological agents are constructed.
Abstract:
A lens is formed out of semiconductor material. The semiconductor produces light which is coupled to the lens. The lens focuses the light and also minimizes refractive reflection. The lens is formed by a graded aluminum alloy, which is oxidized in a lateral direction. The oxidation changes the effective shape of the device according to the grading.
Abstract:
The invention is directed to a method of fabricating sub-wavelength features in semiconductors and insulators by starting with optical lithography patterns defined in a resist and then employing shadow-evaporation and directional etching to define nano-scale features. The directionality of this process is used together with a carefully defined photoresist mask to define an ion etching mask which allows the formation of very narrow trenches adjacent to the photoresist regions. Such narrow trenches can be used for electrical device isolation, for the definition of very small flow channels, and for the deposition of very narrow electrical contacts and wires.
Abstract:
A photocathode electron projector is formed with a sample attached to an anode and a patterned quartz mask attached to a cathode. The quartz mask is patterned with Au—Pd layers that emit electrons when illuminated by ultraviolet light. The ultraviolet light is filtered to just above the work function of the Au—Pd material. This has the effect of causing substantially monochromatic electrons to be emitted. The electrons are brought under influence of a parallel electric and magnetic field to thereby undergo a cyclotronic orbit. An integer number of cyclotronic orbits insures that the electrons hit the sample substantially at the same location as they were on mask.
Abstract:
A method of fabricating a fluidic device comprises providing a fluidic device including a body having a surface and one or more channels located in the body. Recesses are defined on said surface. The one or more channels can have respective boundaries. A layer of adhesive including one or more panel-shaped pieces having a pattern based on the pattern of boundaries of the channels can be formed and applied on the surface of the body. It is further controlled that the layer of adhesive has respective boundaries surrounding the boundaries of the one or more channels.
Abstract:
Temperature control devices and methods are described. The described temperature control devices and methods comprise optical emission and detection assemblies and can be used in PCR and qPCR applications.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A heating/cooling device for a microfluidic apparatus having a thermal insulating substrate. The device includes heating/cooling chamber for heating and/or cooling a sample disposed in the chamber; a waste heat channel for carrying away waste heat and/or waste cooling; and at least one Peltier junction having first and second opposing faces, the first face thereof facing towards said heating/cooling chamber and being in thermal communication therewith for providing either heat or cooling to the chamber in response to a flow of electrical current through the at least one Peltier junction, the second face thereof facing towards said waste heat channel and being in thermal communication therewith for either receiving heat from or dumping heat to the channel in response to a flow of electrical current through the Peltier junction.