Abstract:
Disclosed is a method for aminating hydrocarbons with ammonia. Said method is characterized in that the N2 concentration in the mixture at the reactor outlet is less than 0.1 percent by volume relative to the total volume of the mixture at the reactor outlet (Formula (I)).
Abstract:
The invention relates to a method for the direct amination of hydrocarbons to form amino hydrocarbons, comprising the following steps: conversion of an educt flow E containing at least one hydrocarbon and at least one amination reagent into a reaction mixture R containing amino hydrocarbons and hydrogen, and b) electrochemical separation of at least part of the hydrogen created during the conversion, from the reaction mixture R, by means of a gas-tight membrane electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane. On the retenate side of the membrane, at least part of the hydrogen is oxidised on the anode catalyst to form protons and, after passing through the membrane, on the permeate side, on the cathode catalyst, the protons are b1) reduced to hydrogen and/or b2) converted to water with oxygen, the oxygen originating from a flow O containing oxygen, brought into contact with the permeate side of the membrane.
Abstract:
The invention relates to a method for producing an amine by reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound, selected from the group including ammonia, primary and secondary amines, in the presence of a zirconium dioxide-containing, copper-containing and nickel-containing catalyst, the catalytically active mass of the catalyst prior to its reduction with hydrogen containing oxygen-containing compounds of zirconium, copper, nickel, 0.2 to 40% by weight of oxygen-containing compounds of cobalt, calculated as CoO, 0.1 to 5% by weight of oxygen-containing compounds of iron, calculated as Fe2O3, and 0.1 to 5% by weight of oxygen-containing compounds of lead, tin, bismuth and/or antimony, each calculated as PbO, SnO, Bi2O3 or Sb2O3. The invention also relates to catalysts of the above type.
Abstract:
The invention relates to a method for producing an amine by reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound, selected from the group comprising ammonia, primary and secondary amines, in the presence of a zirconium dioxide-containing catalyst and a nickel-containing catalyst. The invention is characterised in that the catalytically active weight of the catalyst, prior to reduction with hydrogen, contains oxygen-containing compounds of zirconium, copper, nickel and cobalt and oxygen-containing compounds of one or more metals, selected from Pb, Bi, Sn, Sb and In.
Abstract:
The invention relates to a method for producing an amine by reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound, selected from the group comprising ammonia, primary and secondary amines, in the presence of a zirconium dioxide-containing catalyst and a nickel-containing catalyst. The catalytically active weight of the catalyst, prior to reduction with hydrogen, contains oxygen-containing compounds of zirconium, copper, nickel and cobalt and 0,5 to 6 wt.-% oxygen-containing compounds of silver, calculated as AgO.
Abstract:
A process for aminating hydrocarbons with ammonia in the presence of catalyst (i) which catalyzes the amination, characterized in that oxidizing agent is supplied to the reaction mixture and the oxidizing agent is reacted with hydrogen which is formed in the amination in the presence of a catalyst (H) which catalyzes this reaction with hydrogen.
Abstract:
A method for preparing aminodiglycol (ADG) and morpholine by reaction of diethyleneglycol (DEG) with ammonia in the presence of a transition metal heterogeneous catalyst is characterised in that the catalytically active mass of the catalyst contains, before treatment with hydrogen, oxygen-containing compounds of aluminium and/or zirconium, copper, nickel and cobalt, and in that the catalyst moulding in pellet or strand form has a diameter of
Abstract:
The invention relates to a method for producing aromatic amines by catalytically hydrogenating the corresponding nitro compounds, in particular, for producing toluylene diamine by hydrogenating dinitrotoluene. The invention is characterised in that hydrogenation catalysts are used in which a mixture of platinum, nickel and an additional metal are provided as active components.