Abstract:
A system and method to automatically obtain spectra for samples. The method involves a two phase process including a photobleaching phase and a spectral acquisition phase. In the photobleaching phase, a series of spectral data sets of a sample are collected. A relative difference is determined between the background of subsequent spectral data sets is determined and compared to a predetermined threshold value. If threshold difference is less than the relative difference between the background of subsequent spectral data sets, the steps of collecting a series of spectra data sets is automatically repeated. In the spectrum acquisition phase, a series of Raman data sets of the sample are collected until a target SNR is obtained.
Abstract:
In one embodiment, the disclosure relates to a method for interrogating a sample by: illuminating a first region of the sample with a first illumination pattern to obtain a plurality of first sample photons; illuminating a second region of the sample with a second illumination pattern to obtain a plurality of second sample photons; processing the plurality of first sample photons to obtain a characteristic atomic emission of the first region and processing the plurality of second sample photons to obtain a Raman spectrum; and identifying the sample through at least one of the characteristic atomic emission of the first region or the Raman spectrum of the second region of the sample.
Abstract:
The disclosure relates to methods and apparatus for assessing occurrence of one or more hazardous agents in a sample by performing multipoint spectral analysis of the sample using a portable or hand-held device. Methods of employing Raman spectroscopy and other spectrophotometric methods are disclosed. Devices and systems suitable for performing such multipoint methods are also disclosed.
Abstract:
An apparatus and method for the remote analysis and identification of unknown compounds. A robotic arm positions a sensor on a surface. The sensor unit has a monitoring mechanism to monitor separation between the sensor unit and the surface when placed in contact with the surface to maintain the separation substantially constant. An illumination source illuminates the region of interest to produce scattered photons from an unknown compound. The scattered photons are collected by an optical system and delivered to a spectroscopic detector for analysis and identification. An algorithm is applied to the data generated by the spectroscopic detector to identify the unknown compound.
Abstract:
The present disclosure relates to a method and system for enhancing the ability of nuclear, chemical, and biological ("NBC") sensors, specifically mobile sensors, to detect, analyze, and identify NBC agents on a surface, in an aerosol, in a vapor cloud, or other similar environment. Embodiments include the use of a two-stage approach including targeting and identification of a contaminant. Spectral imaging sensors may be used for both wide-field detection (e.g., for scene classification) and narrow-field identification.
Abstract:
The invention relates to methods and devices for assessing one or more components of blood or a selected tissue in an animal. The present invention permits non-invasive assessment of blood or tissue components in a body structure containing multiple tissue types by assessing multiple regions of the animal's body for an optical characteristic of the blood or the tissue of interest and separately assessing one or more optical (e.g., Raman or NIR) characteristics of the blood or tissue component for one or more regions that exhibit the optical characteristic of the blood or the tissue of interest.
Abstract:
The disclosure relates to a substrate material for the improved detection, resolution and imaging of biological material for spectroscopic characterization by Raman of optical imaging spectroscopy. The substrate provides a uniform, optically flat, highly reflective surface which can be made hydrophobic to prevent spreading of the sample and facilitating its optical evaluation. Moreover, the substrate can be coated with a material that does not emit Raman scattered photons when exposed to said illuminating photons. The principles disclosed herein allow a low spectroscopic background particularly suitable for examining small samples or samples having low concentrations of the suspected component.
Abstract:
The disclosure relates to a method and apparatus for a compact birefringent interference imaging spectrometer. More specifically, the disclosure relates to a portable system for obtaining a spectrum of a sample. The portable system may include a first photon emission source (1105, 1110) for illuminating the sample with a first plurality of photons to thereby produce photons scattered by the sample; an optical lens (1116) for collecting the scattered photons; a filter (1124, 1130) for receiving the collected scattered photons and providing therefrom filtered photons; a first photon detector (1126, 1132) for receiving the filtered photons and obtaining therefrom a spectrum of the sample; and a rejection filter (1107) for blocking the photons from said first photon emission source from entering said first photon detector. The disclosure additionally relates to methods of using such portable systems.
Abstract:
The disclosure generally relates to a method and apparatus for multi-wavelength imaging spectrometer. More specifically, in one embodiment, the disclosure relates to an optical filter for passing photons therethrough. The filter includes a first filter stage and a second filter stage. The first filter stage may include a first retarder element (450) and a first liquid crystal cell (455). The first element may include an input face and an output face. One of the first element faces is not oriented substantially normal to the trajectory of photons passing through the filter.