Abstract:
Various embodiments provide for a method for roughening a surface of a MEMs device or the surface of a CMOS surface. A first material can be deposited in a thin layer over a surface made of a second material. After heating, the first and second materials, they can partially melt and interdiffuse, forming an alloy. The first material can then be removed and the alloy is removed at the same time. The surface of the second material that is left behind has then been roughened due to the interdiffusion of the first and second materials.
Abstract:
A MEMS device includes a dual membrane, an electrode, and an interconnecting structure. The dual membrane has a top membrane and a bottom membrane. The bottom membrane is positioned between the top membrane and the electrode and the interconnecting structure defines a spacing between the top membrane and the bottom membrane.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.
Abstract:
The present invention relates to methods for detecting gases in an environment using chemical and thermal sensing. In one embodiment, a method includes exposing a chemiresistor embedded within a sensor pixel to a gas in an environment; setting a heater embedded within the sensor pixel to a sensing temperature, the sensing temperature being greater than room temperature; measuring an electrical resistance of the chemiresistor in response to setting the heater to the sensing temperature; and in response to a difference between the electrical resistance of the chemiresistor and a reference electrical resistance being less than a threshold, supplying a fixed power input to the heater embedded within the sensor pixel and measuring a temperature of the sensor pixel relative to a reference temperature.
Abstract:
Facilitating live fingerprint detection utilizing an integrated ultrasound and infrared (IR) sensor is presented herein. A fingerprint sensor can comprise a first substrate comprising the IR sensor, and a second substrate comprising an ultrasonic transducer. The second substrate is attached to a top portion of the first substrate, and a temperature output of the IR sensor facilitates a determination that a fingerprint output of the ultrasonic transducer corresponds to a finger. The IR sensor can comprise polysilicon comprising a thermopile and an array of photonic crystals thermally coupled to the thermopile.
Abstract:
The present invention relates to low power, low cost, and compact gas sensors and methods for making the same. In one embodiment, the gas sensor includes a heating element embedded in a suspended structure overlying a substrate. The heating element is configured to generate an amount of heat to bring the chemical sensing element to an operating temperature. The chemical sensing element is thermally coupled to the heating element. The chemical sensing element is also exposed to an environment that contains the gas to be measured. In one embodiment, the chemical sensing element comprises a metal oxide compound having an electrical resistance based on the concentration of a gas in the environment and the operating temperature of the chemical sensing element. In this embodiment, the operating temperature of the chemical sensing element is greater than room temperature and determined by the amount of heat generated by the heating element.
Abstract:
A method and system for changing a pressure within at least one enclosure in a MEMS device are disclosed. In a first aspect, the method comprises applying a laser through one of the at least two substrates onto a material which changes the pressure within at least one enclosure when exposed to the laser, wherein the at least one enclosure is formed by the at least two substrates. In a second aspect, the system comprises a MEMS device that includes a first substrate, a second substrate bonded to the first substrate, wherein at least one enclosure is located between the first and the second substrates, a metal layer within one of the first substrate and the second substrate, and a material vertically oriented over the metal layer, wherein when the material is heated the material changes a pressure within the at least one enclosure.
Abstract:
A Microelectromechanical Systems (MEMS) structure with integrated heater is disclosed. The MEMS structure with integrated heater comprises a first substrate with cavities, bonded to a second substrate, forming a plurality of sealed enclosures of at least two types. Each of the plurality of sealed enclosures is defined by the first substrate, the second substrate, and a seal-ring material, where the first enclosure type further includes at least one of a gettering element to decrease cavity pressure in the first enclosure type or an outgassing element to increase cavity pressure in the first enclosure type when activated. The first enclosure type further comprises at least one heater integrated into the first substrate adjacent to the gettering element or the outgassing element to adjust the temperature of the gettering element or the outgassing element thereby providing heating to the gettering element or the outgassing element.
Abstract:
A method for forming a MEMS device includes coupling a MEMS substrate and a base substrate. The MEMS substrate and the base substrate contain at least two enclosures. One enclosures has a first vertical gap between the bonding surface of the MEMS substrate and the bonding surface of the base substrate that is less than a second vertical gap between the bonding surface of the MEMS substrate and the bonding surface of the base substrate than another of the enclosures to provide a height difference between the first vertical gap and the second vertical gap. The method includes bonding the bonding surfaces of the one of the two enclosures at a first pressure to provide a first sealed enclosure. The method includes bonding the bonding surfaces of other of the two enclosures at a second pressure to provide a second sealed enclosure.
Abstract:
The present invention relates to low power, low cost, and compact gas sensors and methods for making the same. In one embodiment, the gas sensor includes a heating element embedded in a suspended structure overlying a substrate. The heating element is configured to generate an amount of heat to bring the chemical sensing element to an operating temperature. The chemical sensing element is thermally coupled to the heating element. The chemical sensing element is also exposed to an environment that contains the gas to be measured. In one embodiment, the chemical sensing element comprises a metal oxide compound having an electrical resistance based on the concentration of a gas in the environment and the operating temperature of the chemical sensing element. In this embodiment, the operating temperature of the chemical sensing element is greater than room temperature and determined by the amount of heat generated by the heating element.