Abstract:
A dynamic shared forward link channel (or “data” channel) is used to send multicast data to a group of wireless devices, e.g., using a common long code mask for the data channel. Reference power control (PC) bits are also sent on the data channel and used for signal quality estimation. A shared forward link control channel is used to send user-specific signaling to individual wireless devices, e.g., using time division multiplexing (TDM) and a unique long code mask for each wireless device. A shared forward link indicator channel is used to send reverse link (RL) PC bits to the wireless devices, e.g., using TDM. The data channel is jointly power controlled by all wireless devices receiving the data channel. The control and indicator channels are individually power controlled by each wireless device such that the signaling and RL PC bits sent on these channels for the wireless device are reliably received.
Abstract:
The frame of data is partitioned into a plurality of portions of data symbols. A plurality of channel elements is assigned to demodulate data symbols of correspondingly the plurality of portions of data symbols. The number of the plurality of portions of data symbols is higher in a case at high data rate than a case at low data rate.
Abstract:
The punctured pilot channel comprises information symbols of uncertain sign punctured into a sequence of pilot channel symbols of predetermined sign. The apparatus includes an information sign demodulation circuit for determining the sign of the information symbols in response to the pilot channel symbols. A continuous pilot generator generates a non-punctured pilot channel of predetermined sign from the information symbols and the pilot channel symbols. In a first embodiment, the information sign demodulator further comprises a dot product circuit for calculating a dot product of the pilot channel symbols and the punctured information symbols, and a threshold comparator for comparing the dot product to a predetermined threshold.
Abstract:
Techniques to quickly adjust an SIR target toward a final value needed to achieve a specified target BLER for a data transmission. The outer loop may be implemented with multiple modes. The SIR target may be maintained fixed in a hold mode, adjusted in large down steps to speed up convergence in an acquisition mode, and adjusted by a small down step and a large up step for good and erased blocks, respectively, in a tracking mode. Various schemes may be used to adjust the SIR target by larger down steps in the acquisition mode. These schemes may be used even if data is transmitted intermittently, the target BLER is set to a low value, and/or one or multiple transport channels are used for data transmission. The SIR target may be boosted by a particular amount upon transitioning from the acquisition mode to the tracking mode.
Abstract:
Techniques for coherent demodulation in the presence of phase discontinuities is described. In the exemplary embodiment, times when phase discontinuities occur are known apriori by a receiver in which demodulation is being performed. In an alternate embodiment, the discontinuity location is signaled to the receiver in advance by the transmitter which generates the signals being demodulated. A pilot signal is prepared for optimal coherent demodulation by the use of two filters: one capable of withstanding the effects of phase discontinuity; a second providing superior filtering performance than the first so long as phase discontinuities are not present. Both filters are simultaneously operated. However, the superior performing filter is selected for use in demodulation whenever possible.
Abstract:
A method of switching between Coherent and Non-Coherent demodulation based on computed metrics, in cases where stereo FM broadcasting stations do not adhere to RDS broadcast specifications. Re-utilizes existing hardware to demodulate RDS data in mono. The residual frequency offset is resolved using a Non Coherent demodulator and a time tracking algorithm. RDS data relies on the 57 kHz sub-carrier that is generated using 19 kHz pilot tone. In Mono broadcasting pilot tone is not present. A local 57 kHz free running signal is generated, and this is then used to demodulate the RDS data in Non-Coherent mode.
Abstract:
Systems and techniques are disclosed relating to communications. The systems and techniques involve spread-spectrum communications using a scheduler, or similar component, configured to maintain a plurality of spreading sequence assignments and a plurality of available spreading sequences each being orthogonal to the assigned spreading sequences. The scheduler may also be configured to select a spreading sequence from a group of the available spreading sequences having the same length, the selected spreading sequence being generated from a block of codes and being selected based on the number of the available spreading sequences that can be generated using the same block of codes.
Abstract:
Aspects disclosed herein relate to facilitating synchronizing frequency and/or timing of a wireless network. In an example, with a femto node configured to receive one or more signals from one or more anchor sources, determine that at least one of the one or more signals are received at least at a threshold signal quality, determine whether a difference in a local frequency and/or a local timing is within a threshold difference to a signal frequency and/or a signal timing determined based on the at least one of the one or more signals, and advertise an anchor status where the difference is within the threshold difference.
Abstract:
The frame of data is partitioned into a plurality of portions of data symbols. A plurality of channel elements (300) is assigned to demodulate data symbols of correspondingly the plurality of portions of data symbols. The number of the plurality of portions of data symbols is higher in a case at high data rate than a case at low data rate.
Abstract:
Aspects disclosed herein relate to facilitating synchronizing frequency and/or timing of a wireless network. In an example, with a femto node configured to receive one or more signals from one or more anchor sources, determine that at least one of the one or more signals are received at least at a threshold signal quality, determine whether a difference in a local frequency and/or a local timing is within a threshold difference to a signal frequency and/or a signal timing determined based on the at least one of the one or more signals, and advertise an anchor status where the difference is within the threshold difference.