Abstract:
Un dispositif de détection bolométrique comprend : - un substrat (14) comprenant un circuit de lecture ; - une matrice de détecteurs élémentaires comprenant chacun une membrane (12) suspendue au-dessus du substrat (14) et raccordée au circuit de lecture par au moins deux conducteurs électriques (16, 18), ladite membrane comprenant deux électrodes électriquement conductrices (20, 22) respectivement raccordées aux deux conducteurs électriques, et un volume de matériau transducteur (24) raccordant électriquement les deux électrodes, dans lequel le circuit de lecture est configuré pour appliquer un stimulus électrique entre les deux électrodes (20, 22) de la membrane (12) et pour former un signal électrique en réponse à ladite application. Ledit volume comporte : - un volume (34, 38, 40) d'un premier matériau transducteur raccordant électriquement les deux électrodes (20, 22) de la membrane (12) et formant des parois d'une enceinte fermée (42) dans laquelle chacune des électrodes (20, 22) est logée au moins partiellement ; et - un volume (44) d'un second matériau transducteur raccordant électriquement les deux électrodes (20, 22) et logé dans l'enceinte (42), la résistivité électrique du second matériau étant inférieure à la résistivité électrique du premier matériau ; et les deux matériaux transducteurs présentant un coefficient thermique de résistivité TCR négatif.
Abstract:
A terahertz-wave detector having a thermal separation structure in which a temperature detection unit 14 including a bolometer thin film 7 connected to electrode wiring 9 is supported so as to be lifted above a substrate 2 by a support part 13 including the electrode wiring 9 connected to a reading circuit 2a formed on the substrate 2, wherein the terahertz-wave detector is provided with a reflective film 3 that is formed on the substrate 2 and reflects terahertz waves and an absorption film 11 that is formed on the temperature detection unit 14 and absorbs terahertz waves and the reflective film 3 is integrally formed with the reflective film of an adjacent terahertz-wave detector.
Abstract:
A thermistor comprising an amorphous alloy semiconductor thin film, a single element semiconductor thin film, wherein the amorphous alloy semiconductor thin film held between the lower and upper single element semiconductor thin film.
Abstract:
An apparatus for measuring an internal temperature of an insulator using an infrared light source is disclosed. The apparatus for measuring an internal temperature of an insulator using an infrared light source includes: an infrared light source which radiates light from an infrared light source passing through a plurality of media on an object to be measured; a temperature measuring unit disposed in the same medium as that for the infrared light source and measuring a temperature transmitted from the object to be measured; and a control operation unit controlling to repeatedly radiate light from the infrared light source on the object to be measured by changing the temperature of the infrared light source, calculating attenuation constant data at a plurality of medium boundary points and on the surface of the object to be measured using temperature data measured by the temperature measuring unit, and operating an actual temperature of the object to be measured by compensating for the temperature measured by the temperature measuring unit using the calculated attenuation constant data.
Abstract:
PROBLEM TO BE SOLVED: To provide an infrared sensor capable of measuring a temperature of a measuring object with high accuracy without losing a heat balance even if lead wire is coupled to one side.SOLUTION: An infrared sensor includes: an insulation film 2; a first heat sensitive element 3A and a second heat sensitive element 3B, each provided on one side of the insulation film; a first wiring film 4A coupled to the first heat sensitive element and a second wiring film 4B coupled to the second heat sensitive element, each provided on the one side of the insulation film; an infrared reflection film 5 provided on the other side of the insulation film opposite to the second heat sensitive element; a plurality of terminal electrodes 6 provided at a same end of the insulation film and coupled to the corresponding first wiring film and second wiring film; and heat resistance adjustment film 7 provided on the other side of the insulation film, arranged opposite to at least part of the first wiring film or the second wiring film having a longer wiring distance from a terminal electrode and made of a material having higher heat dissipation property than the insulation film.
Abstract:
A terahertz-wave detector having a thermal separation structure in which a temperature detection unit 14 including a bolometer thin film 7 connected to electrode wiring 9 is supported so as to be lifted above a substrate 2 by a support part 13 including the electrode wiring 9 connected to a reading circuit 2a formed on the substrate 2, wherein the terahertz-wave detector is provided with a reflective film 3 that is formed on the substrate 2 and reflects terahertz waves and an absorption film 11 that is formed on the temperature detection unit 14 and absorbs terahertz waves and the reflective film 3 is integrally formed with the reflective film of an adjacent terahertz-wave detector.
Abstract:
The present publication describes a heat-resistant optical layered structure, a manufacturing method for a layered structure, and the use of a layered structure as a detector, emitter, and reflecting surface. The layered structure comprises a reflecting layer, an optical structure on top of the reflecting layer, and preferably shielding layers for shielding the reflecting layer and the optical structure. According to the invention, the optical structure on top of the reflecting layer comprises at least one partially transparent layer, which is optically fitted at a distance to the reflecting layer.