Abstract:
Es wird ein Strahlungsmeßgerät (Bolometer) mit einer elektrisch isolierenden Trägerfolie, auf deren einer Seite eine der zu messenden Strahlung auszusetzende, Absorberschicht vorgesehen ist, der gegenüber auf der anderen Seite der Trägerfolie eine hochohmige Widerstandsschicht aufgebracht ist, die Bestandteil einer Widerstandsmeßbrücke ist, beschrieben, bei dem die Absorberschicht in eine seitlich vorstehende mit ihr in thermisch leitendem Kontakt stehende Wärmeleitschicht übergeht und die Wärmeleitschicht gegen die zu messende Strahlung abgeschirmt ist, wobei auch mehrere je eine Absorberschicht tragende Wärmeleitschichten mit Abstand in Reihen nebeneinander angeordnet sein können. Außerdem wird ein Meßsystem mit einem solchen Meßgerät und mit einem zugeordneten, gegen die zu messende Strahlung abgeschirmten Referenzgerät beschrieben, bei dem der Aufbau des Referenzgerätes identisch demjenigen des Meßgerätes entspricht und das . Referenzgerät im gleichen Gehäuse wie das Meßgerät angeordnet sind. Bei einer Ausführungsform sind diese beiden Geräte hintereinander angeordnet, während bei einer Ausführungsform Meß- und Referenzgerät nebeneinander sitzen und diese Anordnung in mehrfacher Weise hintereinander wiederholt ist.
Abstract:
PROBLEM TO BE SOLVED: To provide an infrared detecting element having a structure in which an adhesion film is not easily formed in the space of the hollow structure even when the infrared detecting element is attached to a base plate with an adhesive.SOLUTION: The infrared detecting element comprises: a first base plate 2 having a first front surface 2a, a first back surface 2b on the opposite side of the first front surface 2a, a first recessed portion 4 provided in the first back surface 2b, and an infrared detecting section 3 for detecting infrared rays provided in an area of the first front surface 2a that faces the first recessed portion 4; a second base plate 8 having a second front surface 8a, a second back surface 8b on the opposite side of the second front surface 8a, and a second recessed portion 9 provided in an area of the second back surface 8b that faces the first recessed portion 4; and an adhesion film 7 that bonds the first back surface 2b and the second back surface 8b. An adhesive is applied to the second front surface 8a. A second outer peripheral portion 9b where the second recessed portion 9 intersects with the second back surface 8b surrounds a first outer peripheral portion 4b where the first recessed portion 4 intersects with the first back surface 2b.
Abstract:
PROBLEM TO BE SOLVED: To provide an infrared radiation detector enabling quick detection at the edge of the field of view and high-sensitivity detection at the center of the field of view. SOLUTION: This detector comprises an assembly of elementary sensors capable of detecting the radiation. This assembly comprises at least two separate detection areas: a first detection area comprises elementary sensors having first thermal time constants, and a second detection area (46-49) comprises elementary sensors having second thermal time constants which are smaller than those of the first thermal time constants. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
A detector element for a microbolometer detector includes a platform structure (86) spaced apart from a substrate (76). The platform structure has a peripheral region (90) surrounding a central region (88). First and second contacts (100, 102) are located at the peripheral region (90) proximate opposing first and third edges of the peripheral region. A stiff beam structure (104) extends across the central region between the first and second contacts (100, 102), and at least one sensor is located at the peripheral region (90) proximate at least one of second and fourth edges of the peripheral region. An optically absorptive material structure (114) of a grid pattern of first and second material portions may be located at the central region. First material portions perpendicular to the beam structure may connect to the beam structure and to inner edges of the peripheral region, and none of the second material portions extend continuously between and couples to opposing inner edges of the peripheral region.
Abstract:
A thermal sensor includes an array of pixels, each having a membrane mounted on legs over a reflector, forming a Fabry-Pérot cavity. Each membrane includes an infrared (IR) absorbing material that defines multiple spaced-apart openings separated by micron-level distances that decrease thermal capacity and increase IR absorption of the membrane. Regular pitch distances between adjacent openings provides narrowband IR absorption, with pitch distances below 7.1µm facilitating the detection of IR radiation wavelengths below 7.5µm. Multispectral thermal imaging is achieved by arranging the pixels in repeated groups (superpixels), where each superpixel detects the same set of IR radiation wavelengths. Thermal imaging devices include thermal sensors, IR lenses and device control circuitry arranged in a camera-like manner. A methane leak detection system utilizes two multispectral imaging devices positioned to image a wellhead from two directions, and a system controller that generates spatial and spectral information describing methane plumes using the image data.
Abstract:
A large format array is described having a series of smaller arrays daisy chained together to form the larger array. The smaller arrays are mounted on a base plate that may be of a non planar configuration. The daisy chaining together of the smaller arrays enables a smaller number of connections to be made to the external interface via connections.