Abstract:
The present invention concerns a confocal chromatic device for inspecting the surface of an object (10) such as a wafer, comprising a plurality of optical measurement channels with collection apertures (14) arranged for collecting the light reflected by the object (10) through a chromatic lens (13) at a plurality of measurement points (15), and a magnifying lens (31) arranged for introducing a variable or changeable scaling factor between the spatial repartition of the collection apertures (14) and the measurement points (15). The present invention concerns also a method for inspecting the surface of an object (10) such as a wafer comprising tridimensional structures (11).
Abstract:
Methods and systems are provided, which pattern an illumination of a metrology target with respect to spectral ranges and/or polarizations, illuminate a metrology target by the patterned illumination, and measure radiation scattered from the target by directing, at a pupil plane, selected pupil plane pixels from a to respective single detector(s) by applying a collection pattern to the pupil plane pixels. Single detector measurements (compressive sensing) has increased light sensitivity which is utilized to pattern the illumination and further enhance the information content of detected scattered radiation with respect to predefined metrology parameters.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.
Abstract:
There is provided a nitrogen analyzing method for quantitative analysis of nitrogen in a specimen by a chemiluminescence method using ozone which is capable of measuring a concentration of nitrogen contained in the specimen with still higher accuracy, as well as a nitrogen analyzer used for practicing the analyzing method. Also, according to the present invention, there is provided a nitrogen analyzing method and a nitrogen analyzer which have a less adverse influence on human body and are also capable of further reducing environmental burden even when analyzing nitrogen in fuel-related specimens. The nitrogen analyzing method according to the present invention comprises the steps of burning a specimen comprising a nitrogen compound to generate a specimen gas, allowing the resulting specimen gas to react with ozone to measure a chemiluminescence intensity thereof, and quantitatively determining a concentration of nitrogen in the specimen based on a previously prepared calibration curve expressing a relationship between the chemiluminescence intensity and a weight of nitrogen, wherein the calibration curve is previously prepared from a standard specimen having a nitrogen concentration of 5 to 100 ppm, and the specimen is used in the form of a diluted specimen prepared by diluting the specimen with a solvent into a nitrogen concentration of 5 to 100 ppm.
Abstract:
The invention relates to a detection apparatus (1) for detecting particles on or close to a particles detection surface (5) in a first optical detection mode and in a second optical detection mode, wherein a component of a light detection system (8) and/or a component of an optical system (9) of the detection apparatus is arranged to be used in the first detection mode and in the second detection mode. Since a component of the light detection system and/or a component of the optical system is arranged to be used in the first detection mode and in the second detection mode, this component does not need to be provided twice, i.e. for being used in the first detection mode and for being used in the second detection mode. This can lead to a reduced number of components and can make the detection apparatus technically less complex.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.