Abstract:
Embodiments disclosed herein include package substrates. In an embodiment, the package substrate comprises a core. In an embodiment, the core comprises a first sub-core layer and a second sub-core layer. In an embodiment, a via is provided through the first sub-core layer and the second sub-core layer. In an embodiment, the via comprises a first hourglass shape in the first sub-core layer and a second hourglass shape in the second sub-core layer. In an embodiment, a front-side buildup layer is over the core and a backside buildup layer is under the core.
Abstract:
A conductive pattern formation method of the present invention includes a first exposure step of radiating active light in a patterned manner to a photosensitive layer including a photosensitive resin layer provided on a substrate and a conductive film provided on a surface of the photosensitive resin layer on a side opposite to the substrate; a second exposure step of radiating active light, in the presence of oxygen, to some or all of the portions of the photosensitive layer not exposed at least in the first exposure step; and a development step of developing the photosensitive layer to form a conductive pattern following the second exposure step.
Abstract:
A stacked semiconductor package includes a first semiconductor package including a first circuit board and a first semiconductor device mounted on the first circuit board; a second semiconductor package including a second circuit board and a second semiconductor device mounted on the second circuit board, the second semiconductor package being stacked on the first semiconductor package; and a heat transfer member provided on the first semiconductor device and a part of the first circuit board, the part being around the first semiconductor device.
Abstract:
Provided herein are, among other things, epoxy resin varnishes and methods of making and using the same. In some embodiments, the epoxy resin varnishes comprise at least a filler such as silica. In certain embodiments, the epoxy resin varnishes provided herein are used for making laminates such as copper clad laminates. In farther embodiments, the copper clad laminates provided herein are used for making printed circuit boards (PCBs).
Abstract:
Disclosed herein are an external connection terminal part, a semiconductor package having the external connection terminal part, and a method for manufacturing the same. According to a preferred embodiment of the present invention, the external connection terminal part includes an insulating material and metal plating pattern formed on both surfaces of the insulating material.
Abstract:
A substrate board includes an electrical connection network on a face thereof. An integrated-circuit chip is mounted to the face of the substrate board in electrical contact with the electrical connection network. A local reinforcing or balancing layer made of a non-metallic material is mounted to the face of the substrate board in at least one local zone free of the face which is free of metal portions of the electrical connection network.
Abstract:
Provided herein are, among other things, epoxy resin varnishes and methods of making and using the same. In some embodiments, the epoxy resin varnishes comprise at least a filler such as silica. In certain embodiments, the epoxy resin varnishes provided herein are used for making laminates such as copper clad laminates. In farther embodiments, the copper clad laminates provided herein are used for making printed circuit boards (PCBs).
Abstract:
A circuit board according to an embodiments includes an insulating portion comprising a plurality of insulating layers, wherein the insulating portion includes: a first insulating portion; a second insulating portion disposed on the first insulating portion and having a coefficient of thermal expansion corresponding to the first insulating portion; and a third insulating portion disposed under the first insulating portion and having a coefficient of thermal expansion corresponding to the first insulating portion; wherein the first insulating portion includes a prepreg including glass fibers, and wherein the second and third insulating portions include a resin coated copper (RCC) with a coefficient of thermal expansion in the range of 10 to 65 (10−6 m/m·k).
Abstract:
The present invention relates to a patterned fiber substrate comprising: a fiber substrate; and a pattern consisting of a functional material and formed on the fiber substrate, wherein at least a part of the functional material that constitutes the pattern is present in inside of the fiber substrate, the fiber substrate has a contact angle of 100 to 170° with pure water on its surface, and the pattern has a narrowest line width of 1 to 3000 μm.
Abstract:
A conductive pattern formation method of the present invention includes a first exposure step of radiating active light in a patterned manner to a photosensitive layer including a photosensitive resin layer provided on a substrate and a conductive film provided on a surface of the photosensitive resin layer on a side opposite to the substrate; a second exposure step of radiating active light, in the presence of oxygen, to some or all of the portions of the photosensitive layer not exposed at least in the first exposure step; and a development step of developing the photosensitive layer to form a conductive pattern following the second exposure step.