Abstract:
Provided is a mass spectrometer characterized by: an ionization source including an ESI probe (201), an ESI power source (24), a corona needle (202) and an APCI power source (24); an ionization condition storage section (41) for storing a plurality of ionization conditions related to the liquid sample, set by an analysis operator, with the ionization conditions differing from each other in the value of the ESI voltage or/and the value of the APCI voltage; a mass spectrometry executer (43) for conducting a mass spectrometry for an ion generated from the liquid sample using each of the plurality of ionization conditions; and a mass spectrometry result selector (44) for selecting, for each of the one or plurality of components, a mass spectrometry result in which the ion is detected with a suitable level of intensity for an analysis, from the mass spectrometry results respectively obtained for the plurality of ionization conditions.
Abstract:
An electron-emitting cathode (6) consists of an electrically conducting emitter layer (7) attached to a side wall (2) which consists of stainless steel and a gate (9) which is fixed at a mall distance inside a concave emitter surface of the emitter layer (7). The cathode (6) surrounds a reaction area (3) containing a cylindrical grid-like anode (5) and a central ion collector (4) which consists of a straight axial filament. An ion collector current (lie) reflecting the densitiy of the gas in the reaction region (3) is measured by a current meter (11) while a gate voltage (VG) is kept between the ground voltage of the emitter layer (7) and a higher anode voltage (VA) and is regulated in such a way that an anode current (IA) is kept constant. The emitter layer (7) may consists of carbon nanotubes, diamond-like carbon, a metal or a mixture of metals or a semiconductor material, e.g., silicon which may be coated, e.g., with carbide or molybdenum. The emitter surface can, however, also be a portion of the inside surface of the side wall roughened by, e.g., chemical etching. The gate (9) may be a grid or it may be made up of patches of metal film covering spacers distributed over the emitter area or a metal film covering an electron permeable layer placed on the emitter surface.
Abstract:
An ion storage system is described that includes an ion trap that defines a volume for storing a plurality of ions. A radio frequency (RF) generator is electromagnetically coupled to the volume defined by the ion trap. The RF generator generates an RF electrical field that stores the plurality of ions in the ion trap. A switching device terminates the RF electrical field, which ejects the plurality of ions from the ion trap. An ion detector detects at least a portion of the plurality of ions that are ejected from the ion trap.
Abstract:
An electron-emitting cathode (6) consists of an electrically conducting emitter layer (7) attached to a side wall (2) which consists of stainless steel and a gate (9) which is fixed at a mall distance inside a concave emitter surface of the emitter layer (7). The cathode (6) surrounds a reaction area (3) containing a cylindrical grid-like anode (5) and a central ion collector (4) which consists of a straight axial filament. An ion collector current (lie) reflecting the densitiy of the gas in the reaction region (3) is measured by a current meter (11) while a gate voltage (VG) is kept between the ground voltage of the emitter layer (7) and a higher anode voltage (VA) and is regulated in such a way that an anode current (IA) is kept constant. The emitter layer (7) may consists of carbon nanotubes, diamond-like carbon, a metal or a mixture of metals or a semiconductor material, e.g., silicon which may be coated, e.g., with carbide or molybdenum. The emitter surface can, however, also be a portion of the inside surface of the side wall roughened by, e.g., chemical etching. The gate (9) may be a grid or it may be made up of patches of metal film covering spacers distributed over the emitter area or a metal film covering an electron permeable layer placed on the emitter surface.
Abstract:
An electron-emitting cathode (6) consists of an electricaly conducting emitter layer (7) attached to a side wall (2) and a gate (9) which is fixed at a mall distance inside a concave emitter surface of the emitter layer (7). The cathode (6) surrounds a reaction area (3) containing a cylindrical grid-like anode (5) and a central ion collector (4) which consists of a straight axial filament. An ion collector current (I IC ) reflecting the densitiy of the gas in the reaction region (3) is measured by a current meter (11) while a gate voltage (Vc) is kept between the ground voltage of the emitter layer (7) and a higher anode voltage (V A ) and is regulated in such a way that an anode current (T A ) is kept constant. The emitter layer (7) may comprise an array of metal, e.g., nickel or molybdenum tips or consist essentially of a semiconductor material like silicon, preferably coated by, e.g., carbide, diamond-like carbon or molybdenum, or of carbon nanotubes or it may be a roughened surface portion of the side wall surface. The gate (9) may be a grid or it may be made up of patches of metal film covering spacers distributed over the emitter area or a metal film covering an electron permeable layer placed on the emitter surface.
Abstract:
Eine Multi-Mode-Metall-Ionenquelle mit der Struktur einer Hohlkathoden-Sputter-Ionenquelle mit radialer Ionenextraktion wird wahlweise als Gas-Penning-Ionenquelle (PIG) oder Sputter-Penning-Ionenquelle oder Hohlkathoden-Ionenquelle (HCD) betrieben. Die Elektrodenanordnung der Ionenquelle sitzt im Bereich des Spiegelfeldes zwischen zwei Magnetpolen. Die hohlzylindrische, gekühlte Antikathode hat drei axialen Spalte, der mittlere ist für die radiale Ionenextraktion, in die beiden äußeren ragen je eine Sputterelektrode innenbündig. Eine Schalteinrichtung mit vier Schaltern beaufschlagt die Sputterelektroden und die Antikathode wahlweise mit einem vorgesehenen elektrischen Potential. Die Einrichtung zur Erzeugung des Magnetfelds ist derart gestaltet ist, dass zur Erzielung höherer Feldstärken in der Mittelebene des Luftspaltes, in Richtung der Extraktionsachse gesehen, das Längen- zu Breitenverhältnis der Polschuhfläche zur Erzeugung ausreichender Plasmadichte auf der Entladungsachse zur Initiierung des Elektronenpendeleffekts der Penningentladung