Abstract:
A method for manufacturing a through-hole silicon via (TSV) employs the conventional trench insulation process to readily manufacture a through-hole silicon via (TSV) with achievement of an effective electrical insulation between the through-hole silicon via (TSV) and the silicon.
Abstract:
An image sensor cell is divided into two chips, and a capacitor for noise reduction is formed in a bottom wafer in correspondence with a unit pixel of a top wafer in a stack chip package image sensor having a coupling structure of the two chips, so that noise characteristics of the image sensor are improved. A stack chip package image sensor includes: a first semiconductor chip that includes a photodiode, a transmission transistor, and a first conductive pad and outputs image charge, which is output from the photodiode, through the first conductive pad; and a second semiconductor chip that includes a drive transistor, a selection transistor, a reset transistor, and a second conductive pad and supplies a corresponding pixel with an output voltage corresponding to the image charge received from the first semiconductor chip through the second conductive pad. The second semiconductor chip includes a capacitor for noise reduction.
Abstract:
The present invention relates to a chip-stacked image sensor and to a method for manufacturing the same. More particularly, the present invention relates to a chip-stacked image sensor having a heterogeneous junction structure and to a method for manufacturing the same, in which a first semiconductor chip and a second semiconductor chip are manufactured using substrate materials suitable for the characteristics of sensors formed on each semiconductor substrate, and the semiconductor chips are stacked to form an image sensor. According to the chip-stacked image sensor having a heterogeneous junction structure and the method for manufacturing the same, the material for a first semiconductor substrate used in a first semiconductor chip and the material for a second semiconductor substrate used in a second semiconductor chip are different from each other, thus enabling characteristics of sensors formed on each semiconductor chip to be properly exhibited.
Abstract:
A method for forming a pad in a wafer with a three-dimensional stacking structure is disclosed. The method includes bonding a device wafer that includes an Si substrate and a handling wafer, thinning a back side of the Si substrate, depositing an anti-reflective layer on the thinned back side of the Si substrate, depositing a back side dielectric layer on the anti-reflective layer, defining a space for a pad in the back side dielectric layer and forming vias that pass through the back side dielectric layer and the anti-reflective layer and contact back sides of super contacts which are formed on the Si substrate, filling one or more metals in the vias and the defined space for the pad, and removing a remnant amount of the metal filled in the space for the pad through planarization by a CMP (chemical mechanical polishing) process.
Abstract:
Disclosed is an image sensor with a 3D stack structure, in which pixels of a top plate are realized as image pixels and pixels of a bottom plate are realized as pixels for realizing a phase difference AF, so that the phase difference AF is realized without loss of resolution. In the image sensor with a 3D stack structure, a problem of the reduction of resolution, which is a disadvantage of an existing imaging surface phase difference AF device, is solved, so that a fast phase difference AF is realized while maintaining high resolution without a separate phase difference AF module.
Abstract:
The present invention relates to a substrate stacked image sensor having a dual detection function, in which when first to fourth photodiodes are formed in a first substrate, a fifth photodiode is formed in a second substrate, and the substrates are stacked and combined with each other, the first to fourth photodiodes and the fifth photodiode are combined with each other to obtain a complete photodiode as an element of one pixel, and signals individually detected in each photodiode are selectively read or added to be read according to necessity. To this end, the first to fourth photodiodes are formed in the first substrate, the fifth photodiode is formed in the second substrate, the first to fourth photodiodes and the fifth photodiode make electrical contact with each other, and pixel array sizes of the first substrate and the second substrate are allowed to be different from each other, so that sensor resolution of the first substrate and sensor resolution of the second substrate are different from each other.
Abstract:
Provided is a pixel array having a wide dynamic range, good color reproduction, and good resolution and an image sensor using the pixel array. The pixel array includes a plurality of first type photodiodes, a plurality of second type photodiodes, and a plurality of image signal conversion circuits. A plurality of the second type photodiodes are disposed between the first type photodiodes which are two-dimensionally arrayed. A plurality of the image signal conversion circuits are disposed between the first type photodiodes and the second type photodiodes to process image signals detected by the first type photodiodes and the second type photodiodes. An area of the first type photodiodes is wider than an area of the second type photodiodes.
Abstract:
A device for removing a noise on an image using a cross-kernel type median filter includes a target pixel determination unit configured to determine whether a target pixel is a noise or not; a peripheral pixel determination unit configured to determine degrees of the noise on a peripheral pixel information of a peripheral pixel of the target pixel; and a noise removing unit configured to remove the noise of the target pixel and corrects the image by applying a cross-kernel type median filter based on the peripheral pixel information.
Abstract:
The present invention relates to an image sensor sensor having improved spectral characteristics, and improves a color characteristic and sensitivity of an image sensor by implementing an image sensor sensor using a stacked substrate structure having photodiodes formed on each of two substrates, and generating a color signal having improved spectral characteristics based on an electrical signal outputted from each of the photodiodes formed on two substrates.
Abstract:
The present invention relates to a technology enabling a normal access by controlling a read access through an arbiter in a circuit for controlling an access to memory to which clock signals are input through two ports, respectively for a read access to a single port memory. The present invention includes an arbiter that generates an internal clock signal through a state transition among a first state for generating a first clock signal, a second state for generating a second clock signal, a standby state and a neutral state when generating the internal clock signal for reading data from the memory on the basis of the first clock signal and the second clock signal, and a read end signal that is supplied from the memory.