Abstract:
There is described a radiation source module for use in a fluid treatment system. The radiation source module comprises a plurality of elongate radiation source elements secured to a frame element, each elongate radiation source element having a longitudinal axis; a first motive element secured to a first side portion of the frame element; and a second motive element secured to a second side portion of the frame element. The first motive element and the second motive element are configured to reversibly translate the plurality of elongate radiation source elements in a direction substantially parallel to the longitudinal axis. A fluid treatment system comprising the radiation source module is also described.
Abstract:
There is disclosed a lamp device comprising a longitudinal axis, a first elongate electrical connector and a second elongate electrical connector, each of the first elongate electrical connector and the second elongate connector being non- parallel with respect to the longitudinal axis. The present lamp device provides a reliable electric connection on the one hand, yet is relatively inexpensive, uncomplicated and simple to implement on the other hand.
Abstract:
There is disclosed an optical radiation sensor device. The device includes a radiation collector for receiving radiation from a predefined arc around the collector within the field and redirecting the received radiation along a predefined pathway; motive means to move the radiation collector from a first position in which a first portion of the predefined arc is received by the radiation collector and a second portion in which a second portion of the predefined arc is received by the radiation collector; and a sensor element capable of detecting and responding to incident radiation along the pathway when the radiation collector is in the first position and in the second. The use of the optical radiation sensor device in a radiation source module and in a fluid treatment system is also described.
Abstract:
There is described an optical radiation sensor device for detecting radiation in a radiation field. The device comprises a sensor element capable of detecting and responding to incident radiation from the radiation field and a radiation window interposed between the sensor element and the radiation field. The radiation window comprises a non-circular (preferably square) shaped radiation transparent opening. The optical radiation sensor device can be used in a so-called dynamic manner while mitigating or obviating the detection errors resulting from the use of a circular-shaped attenuating aperture and/or angular (even minor) misalignment of the sensor device with respect to the array of radiation sources when multiple such circular-shaped attenuating apertures are used.
Abstract:
A radiation sensor device comprising a body portion having an entrance through which radiation may enter the body portion, a radiation detector and an optical filter interposed between the entrance and the radiation detector. The radiation detector is capable of detecting radiation having at least one wavelength in the range of from about 125 nm to about 1100 nm, and comprises: (i) a silicon-containing material comprising an n-doped layer disposed on a pair of p-doped layers, and (ii) a passivation layer disposed on a radiation impingement surface of the siliconcontaining material, the passivation layer comprising nitrided silicon dioxide, a metal silicide and mixtures thereof. The optical filter has: (i) an optical transmittance of at least about 40% at a wavelength in the range of from about 175 nm to about 300 nm, and (ii) an optical transmittance of no greater than about 5% at a wavelength greater than about 350 nm.
Abstract:
The object of the invention is a double-walled chamber for the UV disinfection of liquids, preferably drinking water and/or waste water. It realizes a rectangular and/or square cross-sectional shape of the UV radiation chamber even at higher pressures, whereby the radiation chamber can moreover be provided with a thin-walled configuration and allows an optimal and close arrangement of UV radiators as compared with a round chamber. By applying the inventive idea, the known dead zones at the entrance are completely eliminated and an entrance turbulence is produced which runs simultaneously with the piston flow in the chamber.
Abstract:
There is described a fluid treatment system reactor array (105). The reactors (155) are arranged in a manner whereby a flow of fluid may be passed through the array in a substantially helical direction. The fluid treatment system is capable of treating large volumes of fluid (e.g., water) while requiring a relatively small foot print. In essence, the present fluid treatment system concentrates a relatively large number of radiation sources in a relatively small amount of space resulting in the ability to treat large volumes of fluid (e.g., water).
Abstract:
A cleaning apparatus for use in a fluid treatment system comprising a radiation source assembly, the cleaning apparatus comprising: at least one cleaning sleeve (300) in sliding engagement with the exterior of the radiation source assembly (150); a cleaning chamber (310) disposed in the at least one cleaning sleeve in contact with a portion of the exterior of the radiation source assembly (150) and for being supplied with a cleaning solution, the cleaning chamber comprising an opening (370) to an exterior of the cleaning sleeve; a pressure equalization member (355) disposed in the opening to provide a seal between the opening and the exterior of the cleaning sleeve, the pressure equalization member being movable in response to a pressure gradient thereacross; and drive means to translate the at least one cleaning sleeve along the exterior of the radiation source assembly. A fluid treatment device comprise the cleaning apparatus is also described.
Abstract:
A method of cleaning fouling materials from a radiation module, the method comprising the steps of: (i) immersing at least a portion of the radiation module in a fluid; and (ii) subjecting the radiation module to vibration at a frequency sufficient to substantially inhibit fouling materials adhering to the at least one radiation source. A radiation module for use in a fluid treatment system comprising: a support member for mounting the module in the fluid treatment system; at least one radiation assembly extending from the support member; and vibration generation means associated with the at least one radiation assembly. The radiation module is self-cleaning and can take the form of a radiation module or a radiation sensor module. Incorporation of the radiation source module in a fluid treatment system is also described.
Abstract:
A fluid treatment system includes one or more radiation sources arranged in an irradiation zone within a treatment zone through which fluid to be treated passes and is irradiated. The irradiation zone has a closed cross section to maintain the fluid within a predefined maximum distance from the radiation source. Preferably, the irradiation zone comprises a reduced cross-sectional area perpendicular to the direction of fluid flow and thus the fluid flow velocity is increased through the irradiation zone. This allows the fluid to enter the treatment zone at relatively low speed, traverse the irradiation zone at high speed and exit the treatment zone again at relatively low speed to minimize the loss of hydraulic head throughout the system. Fluid entering the treatment zone passes through an inlet transition region wherein the cross-sectional area is reduced prior to entering the irradiation zone and fluid exiting the irradiation zone passes through an outlet transition region wherein the cross-sectional area is increased. Each transition region is designed to reduce hydraulic head losses as the fluid flow velocity is increased and decreased. In the irradiation zone, radiation sources are mounted on radiation modules which are arranged to provide improved accessibility for maintenance. The radiation modules may also be provided with cleaning assemblies which are operable to remove materials fouling the radiation sources in situ while the radiation sources are in the irradiation zone.