동시 용융함침에 의한 혼성 합금 촉매 담지체 제조 방법 및 그 혼성 합금 촉매 담지체
    51.
    发明公开
    동시 용융함침에 의한 혼성 합금 촉매 담지체 제조 방법 및 그 혼성 합금 촉매 담지체 有权
    使用混合金属盐和合金及其混合金属负载催化剂的多金属渗透方法合金和杂化金属负载催化剂的制备方法

    公开(公告)号:KR1020130075980A

    公开(公告)日:2013-07-08

    申请号:KR1020110144339

    申请日:2011-12-28

    CPC classification number: B01J37/0201 B01J27/00 B01J35/04 B01J37/0027

    Abstract: PURPOSE: A hybrid alloy catalyst manufactured by a multi-melt-infiltration process and a manufacturing method of the alloy catalyst are provided to easily support two or more alloy nanoparticles in a porous oxidation metal support. CONSTITUTION: A manufacturing method of a hybrid alloy catalyst includes the steps of: mixing two or more metal salts and a porous support; fusing the metal salts by a multi-melt-infiltration process; and alloying the metal salts in the porous support by a high temperature plasticizing process. The melting point of the metal salts are in the range of 20-130°C. [Reference numerals] (a) Mixing step of hybrid metal salts and a support; (AA) Porous metal oxide support (Silica, alumina); (b) Fusing salts by common melt infiltration; (BB) Common melt infiltration; (c) Step of alloying by a high temperature plasticizing process; (CC,DD) Metal salts; (EE) Mixed metal salts / Support; (FF) High temperature plasticizing (hydrogen atmosphere); (GG) Alloy metal particle supported catalyst

    Abstract translation: 目的:提供通过多熔体渗透法制造的混合合金催化剂和合金催化剂的制造方法,以容易地在多孔氧化金属载体中支撑两种或更多种合金纳米粒子。 构成:混合合金催化剂的制造方法包括以下步骤:将两种或更多种金属盐和多孔载体混合; 通过多熔体渗透方法熔融金属盐; 并通过高温塑化工艺将多孔载体中的金属盐合金化。 金属盐的熔点在20-130℃的范围内。 [附图标记](a)混合金属盐和载体的混合步骤; (AA)多孔金属氧化物载体(二氧化硅,氧化铝); (b)通过熔融渗透法熔融盐; (BB)普通熔体渗透; (c)通过高温塑化工艺合金化步骤; (CC,DD)金属盐; (EE)混合金属盐/支持; (FF)高温塑化(氢气氛); (GG)合金金属颗粒负载型催化剂

    황산화물 흡착을 위한 산 처리된 실리카 기반 흡착제 및 그 산 처리 방법
    52.
    发明公开
    황산화물 흡착을 위한 산 처리된 실리카 기반 흡착제 및 그 산 처리 방법 有权
    用于吸附硫氧化物的酸处理硅石吸附剂及其酸处理方法

    公开(公告)号:KR1020130042264A

    公开(公告)日:2013-04-26

    申请号:KR1020110106449

    申请日:2011-10-18

    CPC classification number: B01J20/3085 B01J20/103 C07C7/12 C10G25/00

    Abstract: PURPOSE: The pretreatment method of a sulfur oxide selectivity absorber and a sulfur oxide selectivity absorber pre-treated thereby are provided to efficiently remove a sulfur oxide in a fraction in which the sulfur oxide is included and increase the breakthrough adsorption capacity of the sulfur oxide and breakthrough drainage by passing through a treatment process before adsorption. CONSTITUTION: The silica based pretreatment method of a sulfur oxide selectivity absorber includes a step for performing an acid treatment on the silica surface. The pretreatment method additionally includes a step for drying the acid-treated silica surface, and the drying temperature is 100 ~ 200>=. The acid includes any one of sulfuric acid, nitric acid, hydrochloric acid, acetic acid, and hydrofluoric acid or a mixture thereof. The concentration of the acid is 0.1 ~ 10M. The contact time of the silica surface and acid is 1 minutes ~2 hours.

    Abstract translation: 目的:提供硫氧化物选择性吸收剂和经过预处理的硫氧化物选择性吸收剂的预处理方法,以有效去除含硫氧化物的部分中的硫氧化物,提高硫氧化物的穿透吸附能力, 吸附前通过处理过程突破性排水。 构成:硫氧化物选择性吸收剂的基于二氧化硅的预处理方法包括在二氧化硅表面上进行酸处理的步骤。 预处理方法还包括干燥酸处理二氧化硅表面的步骤,干燥温度为100〜200℃。 酸包括硫酸,硝酸,盐酸,乙酸和氢氟酸中的任一种或其混合物。 酸的浓度为0.1〜10M。 二氧化硅表面和酸的接触时间为1分钟〜2小时。

    황산화물 선택성 실리카 기반 흡착제 및 그 전처리 방법
    53.
    发明公开
    황산화물 선택성 실리카 기반 흡착제 및 그 전처리 방법 有权
    硫氧化物选择性二氧化硅吸附剂及其预处理方法

    公开(公告)号:KR1020130042263A

    公开(公告)日:2013-04-26

    申请号:KR1020110106448

    申请日:2011-10-18

    Abstract: PURPOSE: A sulfur oxide selectivity absorber and a pretreatment method thereof are provided to effectively remove a sulfur oxide in a fraction in which the sulfur oxide is included by using a non-standardized porous silica and increase the breakthrough adsorption capacity of the sulfur oxide and a breakthrough drainage by presenting detailed absorber treatment conditions like the pore size of silica, a surface area, a surface processing method, and a heat treatment temperature. CONSTITUTION: A sulfur oxide selectivity absorber is based on silica, and the silica is porous silica having the pore size of 4 ~ 9nm. The surface area of the silica is 300 ~ 600m^2/g. The pore volume of the silica is 0.01 ~ 0.3cm^2/g. The pretreatment method of the sulfur oxide selectivity absorber includes a step for the heat treatment of the silica, and the heat treatment temperature is 100 ~ 300>=. Preferably, the heat treatment temperature of the silica is 100 ~ 200>=.

    Abstract translation: 目的:提供硫氧化物选择性吸收剂及其预处理方法,以通过使用非标准多孔二氧化硅有效地除去其中含有硫氧化物的部分中的硫氧化物,并增加硫氧化物的穿透吸附能力和 通过呈现详细的吸收剂处理条件(如二氧化硅的孔径,表面积,表面处理方法和热处理温度)来实现突破性排水。 构成:硫氧化物选择性吸收剂基于二氧化硅,二氧化硅是孔径为4〜9nm的多孔二氧化硅。 二氧化硅的表面积为300〜600m ^ 2 / g。 二氧化硅的孔体积为0.01〜0.3cm ^ 2 / g。 硫氧化物选择性吸收剂的预处理方法包括二氧化硅的热处理工序,热处理温度为100〜300℃。 二氧化硅的热处理温度优选为100〜200℃。

    발효/촉매 복합 공정을 사용한 유기성 폐기물로부터 에탄올의 제조방법
    54.
    发明公开
    발효/촉매 복합 공정을 사용한 유기성 폐기물로부터 에탄올의 제조방법 有权
    通过组合使用发酵和催化过程从有机废物生产生物柴油的方法

    公开(公告)号:KR1020130000339A

    公开(公告)日:2013-01-02

    申请号:KR1020120065947

    申请日:2012-06-20

    CPC classification number: Y02E50/343 Y02W10/23 C12P7/08

    Abstract: PURPOSE: A method for producing biological ethanol using organic waste is provided to enhance ethanol production efficiency and to save costs. CONSTITUTION: A method for producing ethanol from organic waste by a complex process using fermentation and a catalyst comprises: a step of pulverizing the organic waste and preparing pulverized waste; a step of fermenting the pulverized waste under an anaerobic environment and preparing a fermentation-containing lactic acid; a step of separating the fermentation into solid and liquid phase materials and adding the liquid phase material into a reactor; a step of collecting lactate from the liquid phase material, which is adsorbed in an acid form; and a step of eliminating the collected lactate. The organic waste is food waste. [Reference numerals] (AA) Organic waste(food waste, sewage sludge); (BB) Lactic acid fermentation; (CC) Concentration and extraction; (DD) Methane digestion; (EE) Supplying a heating source

    Abstract translation: 目的:提供使用有机废物生产生物乙醇的方法,以提高乙醇生产效率,节约成本。 构成:通过使用发酵和催化剂的复杂工艺从有机废物生产乙醇的方法包括:粉碎有机废物并制备粉碎废物的步骤; 在厌氧环境下发酵粉碎废物并制备含发酵乳酸的步骤; 将发酵分离成固相和液相材料并将液相材料加入到反应器中的步骤; 从吸附在酸性物质中的液相物质中收集乳酸的步骤; 以及消除所收集的乳酸盐的步骤。 有机废物是食物废物。 (附图标记)(AA)有机废物(食物废物,污水污泥); (BB)乳酸发酵; (CC)浓缩萃取; (DD)甲烷消解; (EE)供热源

    생물체 유래 지질의 탈산소 반응 공정에서 반응 산물 내 산소 함량의 실시간 분석 방법
    56.
    发明公开

    公开(公告)号:KR1020120054990A

    公开(公告)日:2012-05-31

    申请号:KR1020100116426

    申请日:2010-11-22

    Abstract: PURPOSE: A real time analysis method the oxygen content in a reaction product in an organism originated lipid deoxygenation reaction process is provided to easily and rapidly measure the oxygen content in a reaction product which is a performance index and a key of a deoxygenation reaction so that a real time diagnosis can be easy. CONSTITUTION: A real time analysis method the oxygen content in a reaction product in an organism originated lipid deoxygenation reaction process is as follows. A part of a reaction product is inserted into a Fourier transform infrared rays analysis device. The oxygen content is calculated by converting measured an absorbance with respect to a carbonyl functional group at a specific frequency into the oxygen content. The measured absorbance with respect to the carbonyl functional group is 1,720cm. The absorbance with respect to the carbonyl functional group is converted so that the oxygen content is calculated according to a predetermined equation.

    Abstract translation: 目的:实时分析方法,提供生物体中产生的反应产物中的氧含量来自脂质脱氧反应过程,以容易且快速地测量作为性能指标和脱氧反应关键的反应产物中的氧含量,使得 实时诊断可以很容易。 构成:实时分析方法,生物体中反应产物中的氧含量起源于脂质脱氧反应过程如下。 将反应产物的一部分插入傅里叶变换红外线分析装置。 通过将特定频率处的相对于羰基官能团的吸光度测定为氧含量来计算氧含量。 测定的相对于羰基官能团的吸光度为1720cm。 转化相对于羰基官能团的吸光度,使得根据预定方程计算氧含量。

    CIGS 박막의 용액상 제조방법 및 이에 의해 제조된 CIGS 박막
    58.
    发明授权
    CIGS 박막의 용액상 제조방법 및 이에 의해 제조된 CIGS 박막 有权
    CIGS薄膜和CIGS薄膜制备方法的相溶制备方法

    公开(公告)号:KR101116705B1

    公开(公告)日:2012-03-13

    申请号:KR1020100097439

    申请日:2010-10-06

    CPC classification number: Y02E10/50 H01L31/0445 H01L31/18

    Abstract: PURPOSE: A solution phase preparation method of a CIGS thin film and the CIGS thin film prepared thereby are provided to form a CIGS in a substrate without high price vacuum deposition equipment by using a liquid manufacturing process. CONSTITUTION: A copper precursor is dissolved in an alcohol-based solvent to be a solution of A, which is spread in a substrate. A substrate coated with the solution of A is dried for 1 minute under 200-250°C . An indium precursor, gallium precursor, selenium precursor are dissolved in a solution to be solution of B, which is coated on the substrate. The substrate is dried for 1 minute under 200°C~250°C. The surface of the substrate is cleaned and dried.

    Abstract translation: 目的:提供CIGS薄膜的溶液相制备方法和由此制备的CIGS薄膜,以通过使用液体制造方法在没有高价格真空沉积设备的基板中形成CIGS。 构成:将铜前体溶解在醇系溶剂中成为扩散在基材中的A的溶液。 将涂有A溶液的基材在200-250℃下干燥1分钟。 将铟前体,镓前体,硒前体溶解在溶液中,将其溶解在涂布在基材上的B溶液中。 基板在200℃〜250℃下干燥1分钟。 将基材的表面清洗干燥。

    화학적 열회수 방법을 이용한 순산소 연소시스템
    60.
    发明公开
    화학적 열회수 방법을 이용한 순산소 연소시스템 有权
    使用化学热回收的氧气燃烧系统

    公开(公告)号:KR1020110095574A

    公开(公告)日:2011-08-25

    申请号:KR1020100015120

    申请日:2010-02-19

    CPC classification number: Y02E20/344 Y02E20/348 Y02E20/366

    Abstract: PURPOSE: An oxy-combustion system using a chemical heat recovery method is provided to improve combustion efficiency of oxygen by preheating the oxygen provided to the combustion device using the heat generated by the reaction between carbon dioxide and calcium oxide. CONSTITUTION: An oxy-combustion system using a chemical heat recovery method comprises a pre-heater. The pre-heater preheats the oxygen provided to a lower oxygen combustion chamber(11) of a combustion device. The calcium oxide, saved in the pre-heater, generates heat by the reaction of carbon dioxide. The calcium carbonate absorbing heat is provided to the fuel combustion chamber in order to prevent the overheating of the upper part of a fuel combustion chamber(12).

    Abstract translation: 目的:提供使用化学热回收方法的氧燃烧系统,通过使用二氧化碳和氧化钙之间的反应产生的热预热提供给燃烧装置的氧气来提高氧的燃烧效率。 构成:使用化学热回收方法的氧燃烧系统包括预热器。 预热器预热燃烧装置的氧气燃烧室(11)的氧气。 保存在预热器中的氧化钙通过二氧化碳的反应产生热量。 为了防止燃料燃烧室(12)上部的过热,向燃料燃烧室提供碳酸钙吸收热。

Patent Agency Ranking