Abstract:
A vertical takeoff and landing aircraft is provided to prevent unbalance of a lift force appearing in a pulsator when the air plane straightly flies by rotating a blade in a case. A vertical takeoff and landing aircraft includes a body(120), at least two rotation section(130), and a case(201). The rotation section includes a rotational shaft and a blade. The rotation section is connected to the body. The case covers the body and the rotation section. An opening is formed in the case. The case has a duct-like shape in which the opening is formed so as to surround the rotation section. The case includes a side wall at the circumference of the blade of the rotation section.
Abstract:
This disclosure describes systems, methods, and apparatus for automating the verification of aerial vehicle sensors as part of a pre-flight, flight departure, in-transit flight, and/or delivery destination calibration verification process. At different stages, aerial vehicle sensors may obtain sensor measurements about objects within an environment, the obtained measurements may be processed to determine information about the object, as presented in the measurements, and the processed information may be compared with the actual information about the object to determine a variation or difference between the information. If the variation is within a tolerance range, the sensor may be auto adjusted and operation of the aerial vehicle may continue. If the variation exceeds a correction range, flight of the aerial vehicle may be aborted and the aerial vehicle routed for a full sensor calibration.
Abstract:
Methods of laser powering unmanned aerial vehicles (UAV) with heat engines are disclosed. The laser powered heat engines are used in conjunction with devices for absorbing laser optical radiation, turning the laser optical radiation into heat, supplying the heat to a working fluid of the heat engine and harvesting mechanical work from expanding working fluid in the heat engine.
Abstract:
An aerial vehicle comprises an elongate envelope within which are at least one first compartment for holding a lighter than air gas and at least one second compartment for holding atmospheric air and said at least one second compartment having an inlet and an outlet and at least one pair of wings extending laterally from the envelope; said wings being planar units with a leading and trailing edge, the width of the wings from their leading edges to their trailing edges being substantially less than the length of the envelope with airfoil portions fitted between the leading and trailing edges of the wing: the top and bottom of the wings are mirror images of one another; in which forward motion of the vehicle is obtainable without trust through alternate diving and climbing motion.
Abstract:
A method of managing a power demand to assure the operation of a pilotless aircraft. The aircraft includes an internal combustion engine supplying a maximum principal power which can vary. The management method is particularly suitable for a rotary wing pilotless aircraft. It guarantees the storage of an amount of electrical energy at least equal to a recovery energy of the aircraft in the event of failure of the internal combustion engine. This recovery energy enables the control of autorotation and landing of the aircraft.
Abstract:
Current aircraft technology comprises of fixed wing, multi rotor and vectored engine design. The synthesis of fixed wing technology and vectoring engine technology has been implemented but limited to traditional fixed wing design aircraft. The aircraft presented has been designed with an innovation in airframe expectation, improved vectoring engine design system, and landing gear system.
Abstract:
A vertical takeoff and landing (VTOL) air vehicle disclosed. The air vehicle can be manned or unmanned. In one embodiment, the air vehicle includes two shrouded propellers, a fuselage and a gyroscopic stabilization disk installed in the fuselage. The gyroscopic stabilization disk can be configured to provide sufficient angular momentum, by sufficient mass and/or sufficient angular velocity, such that the air vehicle is gyroscopically stabilized during various phases of flight. In one embodiment the fuselage is fixedly attached to the shrouded propellers. In another embodiment, the shrouded propellers are pivotably mounted to the fuselage.
Abstract:
A small, reusable interceptor unmanned air vehicle (UAV), an avionics control system for the UAV, a design method for the UAV and a method for controlling the UAV, for interdiction of small scale air, water and ground threats. The UAV includes a high performance airframe with integrated weapon and avionics platforms. Design of the UAV first involves the selection of a suitable weapon, then the design of the interceptor airframe to achieve weapon aiming via airframe maneuvering. The UAV utilizes an avionics control system that is vehicle-centric and, as such, provides for a high degree of autonomous control of the UAV. A situational awareness processor has access to a suite of disparate sensors that provide data for intelligently (autonomously) carrying out various mission scenarios. A flight control processor operationally integrated with the situational awareness processor includes a pilot controller and an autopilot controller for flying and maneuvering the UAV.