Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Disclosed is an ultrasonic transducer that is provided with: a bottom electrode; an electric connection part which is connected to the bottom electrode from the bottom of the bottom electrode; a first insulating film which is formed so as to cover the bottom electrode; a cavity which is formed on the first insulating film so as to overlap the bottom electrode when seen from above; a second insulating film which is formed so as to cover the cavity; and a top electrode which is formed on the second insulating film so as to overlap the cavity when seen from above. The electric connection part to the bottom electrode is positioned so as to not overlap the cavity when seen from above.
Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Abstract:
A method of shaping a substrate in one embodiment includes providing a first support layer, providing a first shaping pattern on the first support layer, providing a substrate on the first shaping pattern, performing a first chemical mechanical polishing (CMP) process on the substrate positioned on the first shaping pattern, and removing the once polished substrate from the first shaping pattern.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Abstract:
A method of removing polysilicon in preference to silicon dioxide and/or silicon nitride by chemical mechanical polishing. The method removes polysilicon from a surface at a high removal rate while maintaining a high selectivity of polysilicon to silicon dioxide and/or a polysilicon to silicon nitride. The method is particularly suitable for use in the fabrication of MEMS devices.
Abstract:
A micromechanical component and a method for producing the component are provided. The micromechanical component includes a substrate and a micromechanical functional layer of a first material provided over the substrate. The functional layer has a first and second regions, which are connected by a third region of a second material, and at least one of the regions is part of a movable structure, which is suspended over the substrate.
Abstract:
Method for fabricating ultrathin gaps producing ultrashort standoffs in array structures includes sandwiching a patterned device layer between a silicon standoff layer and a silicon support layer, providing that the back surfaces of the respective silicon support layer and the standoff layer are polished to a desired thickness corresponding to the desired standoff height on one side and to at least a minimum height for mechanical strength on the opposing side, as well as to a desired smoothness. Standoffs and mechanical supports are then fabricated by etching to produce voids with the dielectric oxides on both sides of the device layer serving as suitable etch stops. Thereafter, the exposed portions of the oxide layers are removed to release the pattern, and a package layer is mated with the standoff voids to produce a finished device. The standoff layer can be fabricated to counteract curvature.