Abstract:
The invention relates to a micromechanical component comprising: a substrate (1); a monocrystalline layer (10), which is provided above the substrate (1) and which has a membrane region (10a); a cavity (50) that is provided underneath the membrane region (10a), and; one or more porous regions (150; 150'), which are provided inside the monocrystalline layer (10) and which have a doping (n ; p ) that is higher than that of the surrounding layer (10).
Abstract:
The invention relates to the production of a micromechanical component, comprising a substrate (10), made from a substrate material with a first doping type (p), a micromechanical functional structure arranged in the substrate (10) and a cover layer for the at least partial covering of the micromechanical functional structure. The micromechanical functional structure comprises regions (15; 15a; 15b; 15c; 730; 740; 830) made from the substrate material with a second doping type (n), at least partially surrounded by a cavity (50; 50a-f) and the cover layer comprises a porous layer (30) made from the substrate material.
Abstract:
Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
Abstract:
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
Abstract:
A microfluidic device is provided. The microfluidic device includes a microtube having a hollow core. The microfluidic device further includes a plurality of nanopores extending radially outwards from an inner surface of the microtube.
Abstract:
The invention relates to a method and to a device for electrochemical micro- and/or nano-structuring, which are reliable, fast, simple, easy to implement, and reproducible. For this purpose, the invention provides a method of electrochemically structuring a sample (12) of conductive or semiconductor material that has opposite front and rear faces (11 and 13). The method comprises the steps consisting: in putting at least the front face (11) of the sample (12) into contact with at least one electrolytic solution (4) stored in at least one tank (3); in placing at least one counter-electrode (6) in an electrolyte (4) in register with the front face (11) of the sample (12), said front face (11) being for structuring; in placing at least one working electrode (7) presenting structuring patterns (14) into dry ohmic contact with the rear face (13) of the sample (12); and in applying an electric current between at least one counter-electrode (6) and at one least working electrode (7) that are substantially in register with each other in order to obtain an electrochemical reaction at the interface between the front face (11) of the sample (12) and the electrolyte (4) with current density that is modulated by the structuring patterns (14) of the working electrode (7) in order to perform etching and/or deposition on the front face (11) of the sample (12).
Abstract:
Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
Abstract:
A micromechanical component is described which includes a substrate; a monocrystalline layer, which is provided above the substrate and which has a membrane area; a cavity that is provided underneath the membrane area; and one or more porous areas, which are provided inside the monocrystalline layer and which have a doping that is higher than that of the surrounding layer.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.