Abstract:
The present invention provides a method of fabricating a biosensor. The method includes providing a substrate which has a surface coating. The surface coating is deformable and the substrate includes a layered structure which has at least two electrically conductive layers separated by at least one electrically insulating layer. The method also includes imprinting a structure into the surface coating. Further, the method includes etching at least a region of the imprinted structure and the substrate to remove at least a portion of the structure and the substrate. The structure is shaped so that the etching forms at least a portion of the biosensor in the substrate and exposes at least a portion of each electrically conductive layer to form electrodes of the biosensor.
Abstract:
A method of forming a relief pattern on the surface of a substrate comprises the steps of providing a substrate, coating a thin layer of polymeric material onto the substrate, drying the polymeric material to leave residual lateral stress within the material, bringing a patterned stamp into contact with the polymeric material and applying pressure to the stamp such that the polymeric material ruptures patternwise and dewets at the surface of the substrate to form openings in the polymeric layer according to the pattern on the stamp.
Abstract:
The present invention relates to a capacitive measurement method and system for a nanoimprint process, which arranges a plurality of electrode plates on both the backside of the master mold and the surface of the supporting base carrying the wafer substrate to form a plurality of capacitive structures. By monitoring the capacitance variation signal caused by the continuous variations in the thickness and the material properties of the resist during the imprint process, the status of the resist can be monitored and recorded, which is used as the references for determining the timing to demold in the nanoimprint process and for maintaining the flatness of the resist. Accordingly, the nanoimprint process can be automated easier and the quality and the throughput of of the nanometer scaled imprint product can be improved.
Abstract:
The carbon-doped metal oxide films described provide a low coefficient of friction, typically ranging from about 0.05 to about 0.4. Applied over a silicon substrate, for example, the carbon-doped metal oxide films provide anti-stiction properties, where the measured work of adhesion for a coated MEMS cantilever beam is less than 10 μJ/m2. The films provide unexpectedly low water vapor transmission. In addition, the carbon-doped metal oxide films are excellent when used as a surface release coating for nanoimprint lithography. The carbon content in the carbon-doped metal oxide films ranges from about 5 atomic % to about 20 atomic %.
Abstract translation:所述的碳掺杂的金属氧化物膜提供低摩擦系数,通常为约0.05至约0.4。 施加在硅衬底上,例如,碳掺杂的金属氧化物膜提供抗静电性质,其中测量的涂覆的MEMS悬臂梁的粘附力小于10μJ/ m 2。 这些膜提供了意想不到的低水蒸汽传输。 此外,当用作纳米压印光刻的表面剥离涂层时,碳掺杂的金属氧化物膜是优异的。 碳掺杂的金属氧化物膜中的碳含量为约5原子%至约20原子%。
Abstract:
A method of forming a stamped feature (P) on a substrate (S) includes: applying a plurality of stamping tool segments (32, 40a, 40b, 40c, 50, 60, 70, 80, 92) to at least one surface of the substrate. An arrangement (30, 90) for forming a stamped feature (P) on a substrate (S) includes a plurality of stamping tool segments (32, 40a, 40b, 40c, 50, 60, 70, 80, 92) that actuatable individually, in concert in groups of more than one, or combinations thereof.
Abstract:
본 발명의 실시 형태에 따른 나노 임프린트를 이용한 나노 구조물 형성 방법 은, 기판 상에 순차적으로 제1 및 제2 레지스트층을 형성하는 단계; 몸체부 및 몸체부로부터 연장되며 단면의 크기가 변화되는 나노 패턴을 포함하는 몰드를 준비하는 단계; 나노 패턴이 제2 레지스트층에 삽입되도록 제2 레지스트층 상에 몰드를 가압하여 나노 패턴이 전사된 패턴 영역을 형성하는 단계; 몰드를 제거한 후, 패턴 영역에서 기판이 노출되도록 제1 레지스트층을 선택적으로 식각하는 단계; 및 제2 레지스트층을 마스크층으로 이용하여 기판 상에 나노 구조물을 형성하는 단계를 포함한다.
Abstract:
The present invention provides three-dimensional hydrogel structures patterned by a treated micropattern mold. The treated mold is capable of transferring the inverse of its micropattern to a hydrogel by contact during formation or polymerization of the structure from a precursor. The treated micropattern mold surface allows the mold to be separated from the hydrogel without collapsing the structure or irreparably damaging its micropattern. The transferred micropattern may yield individual features and/or interconnected channels in the hydrogel. The invention also provides a hydrogel network fabricated by interfacing at least two hydrogels in which one or more of the hydrogels may be a micropatterned structure. Micropatterned hydrogel structures can also be specifically aligned to interconnect their patterns. Structures or networks of the invention comprise hydrogels that can adhere together by chemically bonding and/or mechanically entangling.
Abstract:
The invention relates to a device comprising a base substrate(700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from said component (702). It also comprises spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via said spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) comprises vias (710) comprising metal for providing electrical connection through said capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.