Abstract:
The present invention relates to a light sensing system for sensing ambient light intensity, comprising a light sensing device with at least one light sensor and a calibration device for calibrating the sensor. The calibration device comprises at least one light source that emits light with a standard intensity. The invention is further related to a corresponding method for calibrating a light sensing device, comprising the illumination of the light sensor of the light sensing device with light that has a standard intensity, the comparison of the output intensity signal of the sensor with an expected signal that corresponds to the standard intensity, and the matching of the output intensity signal of the sensor to the expected signal by adjusting a gain parameter of the sensor.
Abstract:
A wafer includes multiple optical devices that each includes one or more optical components. The optical components include light-generating components that each generates a light signal in response to application of electrical energy to the light-generating component from electronics that are external to the wafer. The optical components also include receiver components that each outputs an electrical signal in response to receipt of light. The wafer also includes testing waveguides that each extends from within a boundary of one of the optical devices across the boundary of the optical device and also provides optical communication between a first portion of the optical components and a second portion of the optical components. The first portion of the optical components includes one or more of the light-generating components and the second portion of the optical components include one or more of the receiver components.
Abstract:
A photonics system includes a transmit photonics module and a receive photonics module. The photonics system also includes a transmit waveguide coupled to the transmit photonics module, a first optical switch integrated with the transmit waveguide, and a diagnostics waveguide optically coupled to the first optical switch. The photonics system further includes a receive waveguide coupled to the receive photonics module and a second optical switch integrated with the receive waveguide and optically coupled to the diagnostics waveguide.
Abstract:
A uniform light generating system for testing an image-sensing device includes a light-generating unit, a light-transmitting unit, a light-diffusing unit, and a lens unit. The light-generating unit has a substrate and a plurality of light-emitting elements electrically disposed on the substrate. The light-transmitting unit has one side communicated with the light-generating unit for receiving and uniformizing light beams projected from the light-emitting elements. The light-diffusing unit has one side disposed on the other side of the light-transmitting unit for receiving and diffusing the light beams that have passed through the light-transmitting unit. The lens unit is disposed on the other side of the light-diffusing unit for transmitting the light beams that have passed through the light-diffusing unit to the image-sensing device.
Abstract:
A uniform light generating system for testing an image-sensing device includes a light-generating unit, a light-transmitting unit, a light-diffusing unit, and a lens unit. The light-generating unit has a substrate and a plurality of light-emitting elements electrically disposed on the substrate. The light-transmitting unit has one side communicated with the light-generating unit for receiving and uniformizing light beams projected from the light-emitting elements. The light-diffusing unit has one side disposed on the other side of the light-transmitting unit for receiving and diffusing the light beams that have passed through the light-transmitting unit. The lens unit is disposed on the other side of the light-diffusing unit for transmitting the light beams that have passed through the light-diffusing unit to the image-sensing device.
Abstract:
A method and apparatus for troubleshooting a plurality of photosensors in a machine, such as a mail sorter and mail inserter. The troubleshooting procedure is carried out by a software program. As each photosensor comprises a photo-detector and an associated light emitter for illuminating the photo-detector, the test is based on the output voltage of the photo-detector in response to a current value on the light emitter. Based on the two or more current values set to the light emitter and the corresponding measured output voltage values, the software program determines whether the photosensor is functional. If the photosensor is not functional, possible causes and suggested remedies are provided to the operator of the machine.
Abstract:
Ein optoelektronischer Sensor zur Erkennung von Objekten oder Objekteigenschaften umfasst einen Lichtsender zum Aussenden von Sendelicht in einen Erfassungsbereich, einen Lichtempfänger zum Empfangen von Empfangslicht und eine Auswerteeinheit, die dazu ausgebildet ist, anhand des von dem Lichtempfänger empfangenen Empfangslichts ein in dem Erfassungsbereich befindliches oder in diesen hineinragendes Objekt zu erfassen und/oder eine Eigenschaft des solchen Objekts zu ermitteln. Der Lichtsender umfasst ein monolithisches HalbleiterBauelement mit einer ersten lichtemittierenden Schicht und einer zweiten lichtemittierenden Schicht, wobei die erste lichtemittierende Schicht zum Emittieren von rotem Licht ausgebildet ist und die zweite lichtemittierende Schicht zum Emittieren von infrarotem Licht ausgebildet ist und wobei die zweite lichtemittierende Schicht eine zentrale Leuchtfläche und die erste lichtemittierende Schicht eine die zentrale Leuchtfläche umschließende, äußere Leuchtfläche definiert..
Abstract:
A photonics system includes a transmit photonics module and a receive photonics module. The photonics system also includes a transmit waveguide coupled to the transmit photonics module, a first optical switch integrated with the transmit waveguide, and a diagnostics waveguide optically coupled to the first optical switch. The photonics system further includes a receive waveguide coupled to the receive photonics module and a second optical switch integrated with the receive waveguide and optically coupled to the diagnostics waveguide.
Abstract:
A system (102) for determining properties of a sample (114) comprises a LIBS detector (104,106) and an infra-red absorption detector (108,110) for interrogating a sample (114) to generate LIBS spectral data and infra-red absorption spectral data respectively; and a data processor (112) adapted to apply at least one chemometric prediction model, each constructed to link, preferably quantitatively link, features of both LIBS and absorption spectral data to a different specific property of the sample, to a combined dataset derived from at least portions of both the LIBS and the absorption data to generate therefrom a determination, preferably a quantitative determination, of the specific property linked by that model.