Abstract:
A time register includes: a pair of inputs coupled to a pair of input clocks; a pair of tri-state inverters for producing a pair of level signals; and a pair of outputs coupled to the level signals for producing a pair of output clocks, wherein the tri-state inverters are responsive to a pair of state signals and the pair of input clocks for holding or discharging the level signals.
Abstract:
A digital phase locked loop (DPLL) circuit includes a digital-to-time converter (DTC) configured to generate a delayed reference clock signal by delaying a reference clock signal according to a delay control signal and a time-to-digital converter (TDC) coupled to an output of the DTC. The TDC is configured to sample a value of a transition signal according to the delayed reference clock signal and to generate an output signal indicating a phase difference between the delayed clock signal and an input clock signal. A method of controlling a DPLL includes delaying a reference clock signal according to a delay control signal, sampling a value of a transition signal according to the delayed reference clock signal, generating an output signal indicating a phase difference between the delayed clock signal and an input clock signal, and generating a digitally controlled oscillator (DCO) clock signal according to the output signal.
Abstract:
Two sets of information (phase and cycle count) that are created asynchronously in a voltage controlled oscillator based analog-to-digital converter. A third set of information is created that is a delayed cycle count. The three sets of information are used to determine the proper alignment of the phase and the cycle count.
Abstract:
A time-to-digital converter includes a first gated ring oscillator, a second gated ring oscillator, a phase adjusting unit, and a digital converter unit. The first gated ring oscillator includes a plurality of first delay cells connected in a cyclic structure and operating in response to an enable signal. The second gated ring oscillator includes a plurality of second delay cells connected in a cyclic structure and operating in response to the enable signal. The phase adjusting unit adjusts a phase of a second circulation signal circulating in the second gated ring oscillator so as for the second circulation signal to have a predetermined phase difference with respect to a first circulation signal circulating in the first gated ring oscillator. The digital converter unit samples output signals of the first delay cells and the second delay cells to output a digital value corresponding to duration of the enable signal.
Abstract:
Time-to-digital converters (TDC) with improved resistance to metastability are provided. The TDC includes a ring oscillator gated by a start signal. A stop signal triggers capturing values of phase signals from the ring oscillator using master-slave flip-flops. Signals from two of the master stages of the flip-flops are logically combined to produce a counter clock signal that causes a counter to count. The outputs of the flip-flops and of the counter are encoded to produce a digital representation of the time between transitions of the start signal and the stop signal. Since the signals from the master stages of flip-flops are captured (and stop toggling) by the stop signal, the counter clock signal stops toggling, and the counter stops counting. This assures that the values of the captured phase signals and the counter are consistent and avoids metastability errors that could otherwise occur.
Abstract:
A method for interference suppression of a sampling process includes sampling an analog signal with a sampling frequency f, and determining whether an interference amplitude is present. The method provides that if an interference amplitude is present, the sampling frequency f is increased or decreased, and the method begins again with the sampling of the analog signal with the increased or decreased sampling frequency. In addition, a device is described for carrying out the method.
Abstract:
An edge detector includes flip-flops receiving phase signals of a ring oscillator, a resetter canceling the reset states of the flip-flops at the edge timing of an input signal, and a logical operator performing a logical operation on output signals of the flip-flops. A phase state detector detects a phase state of the ring oscillator occurring at the edge timing of the input signal based on the output signals of the flip-flops. A time-to-digital converter converts an edge interval between the input signal and an output signal of the logical operator into a digital value. A latch latches a value of a counter counting the number of cycles of an output signal of the ring oscillator, at the edge timing of the input signal. An operator calculates a digital value of a received signal from output signals of the latch, the phase state detector, and the time-to-digital converter.
Abstract:
A method and electronic device for outputting time values and energy of an analog input signal by dynamically determining a plurality of threshold values, comparing, using a plurality of comparator circuits, the plurality of threshold values against the analog input signal, outputting, using at least one time to digital conversion circuit connected to each of the plurality of comparator circuits, a plurality of time values, each time value output when the analog input signal meets or exceeds a threshold value of the threshold values, filtering the analog input signal, performing, using an analog-to-digital conversion circuit, analog-to-digital conversion of the filtered analog input signal to generate a digital signal, and calculating, in response to receiving a trigger signal, an energy of the digital signal.
Abstract:
A sigma-delta modulator is provided for generating a digital output signal. The sigma-delta modulator is used to generate a digital output signal. The sigma-delta modulator includes a multi-stage loop filter and a quantizer. The multi-stage loop filter receives an analog input signal and generates an integrated output signal according to the analog input signal. The quantizer is coupled to the multi-stage loop filter. The quantizer receives the integrated output signal and quantizes the integrated output signal to generate the digital output signal. Different feed-forward paths of the sigma-delta modulator are available for different frequency bands.
Abstract:
A monolithic integrable R-2R resistor network comprises a number of series resistors connected to a terminal resistor; and a plurality of 2R resistor units each capable of being switched by two electronic switches either to ground or to another reference point, a different plurality of 2R resistor units being coupled to the nodes between each of the series resistors, to the node between the terminal resistor and the last resistor of the series resistors and to the node ahead of the first resistor of the series resistors. To compensate for the effects of the variations of the switch resistances caused during manufacture by process parameter fluctuations upon the accuracy of a D/A converter, a switch structure is inserted at each of the nodes which, with respect to the two electronic switches, is of the same kind, and which is permanently in an electrically conducting state. Preferably, there are used insulated-gate field-effect transistors and insulated-gate field-effect transistor structures, the identical electrodes of which, for example, the source electrodes, are directly connected to each of the nodes.