Abstract:
An apparatus and method of providing an electrical component interface is disclosed. For one embodiment, the electrical component interface includes an electrical component adapter. The electrical component adapter includes an electronic component solder pattern for receiving and allowing attachment of an electrical component. An adhesive backing is adjacent a surface of the electrical component adapter. The adhesive backing provides attachment of the electrical component adapter to a second surface.
Abstract:
A configurable light emitting system includes a plurality of light emitting units, at least a first external conductor, and at least a second external conductor. Each of the light emitting units includes an anode, a cathode, a first electrical contact electrically connected to the anode, and a second electrical contact electrically connected to the cathode. The first external conductor is electrically connected to the first electrical contact of each of the light emitting unit, and configured to supply a positive voltage thereto. The second external conductor is electrically connected to the second electrical contact of each of the light emitting unit, and configured to supply a negative voltage thereto. The plurality of the light emitting units are configured as a tile structure or a brick structure, and are electrically connected together through the first external conductor and second external conductor.
Abstract:
Printed circuit boards and breadboard devices have contact pads and magnetic component connectors where connection between the contact pads and the magnetic component connectors are made by magnetic force. Either the contact pad or the magnetic component connector will be magnetic and the other will be made of a material to which a magnet will be attracted. For example, printed circuit boards, which usually have copper traces, include contact pads made of a material to which a magnet will be attracted. Circuit components are connected to magnetic component connectors having magnetic legs which then connect the components to the contact pads of the circuit board or breadboard device. This makes the connection of components to a printed circuit board or breadboard device fast and easy and provides for easy removal and replacement of components. Magnetic component connectors can also be configured to connect magnetically to one another.
Abstract:
In a construction for electrically connecting electrical unit with joint surfaces thereof opposed to each other, wiring patterns electrically connected with distortion gauges are formed on function-element forming surfaces of each electrical three-dimensional unit and are extended to edge portions formed between the function-element forming surfaces and adjacent wiring surfaces as the joint surfaces to form first lands; second lands extending from the edge portions by a specified distance are formed at positions of the wiring surfaces corresponding to the first lands; and electrical connectors displaying a joining performance upon being pressed together are formed to bridge the first and second lands while being held in close contact with the first and second lands. A plurality of three-dimensional electrical unit can be securely and easily electrically connected with each other with high precision.
Abstract:
An electronic component is disclosed including a plurality of semiconductor packages soldered together in a side-by-side configuration. The packages are batch processed on a substrate panel. The panel includes a plurality of through-holes drilled through the panel and subsequently filled with metal such as copper or gold. These filled through-holes lie along the cut line between adjacent packages so that, upon singulation, the filled through holes are cut and a portion of the filled through-holes are exposed at the side edges of the singulated packages. These exposed portions of the filled through-holes form vertical surface mount technology (SMT) pads. After the semiconductor packages are singulated and the SMT pads are defined in the side edges, SMT is used to solder the SMT pads of a first semiconductor package to the respective SMT pads of a second semiconductor package to structurally and electrically couple the two packages together side-by-side.
Abstract:
Electronic Circuit Building Blocks are mechanically connected to each other to form larger circuit boards using a mechanical bridge connector. The Electronic Circuit Building Blocks include female interlocking elements formed on its edges, and the mechanical bridge connector includes male interlocking elements. Half parts of the male interlocking elements of the mechanical bridge connector are inserted into the corresponding female interlocking elements of the Electronic Circuit Building Blocks from one side of the circuit board. The Electronic Circuit Building Blocks include through-holes for mounting through-hole components and/or surface-mount pads for mounting surface-mount components. The Electronic Circuit Building Blocks also include traces interconnecting two or more of the through-hole components and the surface-mount components.
Abstract:
In Electronics, there exists three distinctive areas namely, discrete components or devices, circuits, and systems. A circuit is built from devices and a system is built from circuits. This invention aims at reducing the implementation of electronic systems down to just three steps namely, systems design, printed-circuit-board planar assembly, and systems test when-as a plurality of Universal Systems Printed-Circuit Blocks of pre-defined sizes is used. Each of said Universal Systems Printed-Circuit Blocks being usable and reusable for prototypes and production is built from a printed circuit board having thereon a functional circuit and a variety of circuit patterns and interconnection structures such that, any of said Blocks, when joined together with other Blocks on the same plane by standard connectors or electrically conductive compounds to form a systems board, can send and receive signals and voltages to and from any other Blocks.
Abstract:
In a method for fabricating a printed circuit board on a doubly contoured or hemispherical substrate such as a radome, a coherent light source is used to form a plurality of elements of a predetermined pattern on the surface of the substrate. The substrate includes a bottom layer and a metallized layer. At least a first element of the pattern is formed by ablating the element into a resist coating or ablating the element into the metallized layer with the coherent light source. The coherent light source preferably includes an excimer laser. The substrate is then displaced relative to the coherent light source until all the elements of the predetermined pattern are formed over the entire surface of the substrate. When the pattern is ablated into the resist material, an etching technique is used to remove portions of the metallized layer from the substrate.
Abstract:
An electrically conductive element, including an insulator and a first conductor, is provided, which can be affixed to a second conductor consisting of conductive structural element, wherein the insulator is positioned between the first and second conductors to electrically isolate them. A power supply may be connected between the first and second conductors to provide power thereto, and an electrical device may be connected across the first and second conductors.
Abstract:
Disclosed are a light emitting unit and a liquid crystal display device using the same. The light emitting unit includes a circuit board including circuit lines and a plurality of connecting members, and a plurality of unit modules connected to the connecting members of the circuit board. The unit module includes at least one light emitting device.