Abstract:
PURPOSE: A positive electrode for a secondary battery and a manufacturing method thereof are provided to rapidly charge and discharge the electrode with a high current, and to secure an excellent electric contact structure. CONSTITUTION: A manufacturing method of a positive electrode for a secondary battery comprises the following steps: forming a composite fiber web mixed with a metal oxide precursor and a membranous polymer on a positive electrode current collector by spinning a solution including the precursor and the polymer; thermo-compressing the composite fiber web; and forming a porous positive electrode active material layer including metal oxide nano particles by removing the membranous polymer from the composite fiber web.
Abstract:
A negative electrode for a secondary battery is provided to ensure high mechanical, thermal and electrical stability by improving adhesive property between a current collector and a negative electrode active material, and to obtain a high power battery with high-capacity. A negative electrode for a secondary battery comprises a negative electrode current collector and a negative electrode active material compressed on one surface of the current collector. The negative electrode active material is a web thin layer of belt-shaped metal oxide nanofiber by heat treating a web of metal salt precursor-polymer composite fiber and is formed by spraying the solution mixed with at least 2 kinds of metal salt precursors. The nanofiber comprises ternary of metal oxide nanoparticle or more.
Abstract:
A dye-sensitized solar cell and a manufacturing method thereof are provided to increase current density by generating more amount of electro-hole pairs using a forth and back scattering effect. A transparent electrode is formed on a substrate made of transparent glass or plastic to form a lower transparent conductive substrate(101), and a shield layer(102) is formed on an upper surface of the lower transparent substrate. A porous titanium oxide electrode(103) is formed on the shield layer, in which dye is absorbed on a surface of the electrode. An upper transparent conductive substrate(107) is opposite to the lower transparent substrate, and an opposite electrode(106) is formed on a surface of the upper transparent substrate. A liquid or solid electrolyte(104) is filled between the titanium oxide electrode and the opposite electrode.
Abstract:
본 발명은 커패시터의 유전체막으로 비정질 BST에 억셉터를 도핑하여 사용함으로써 저유전손실, 저누설전류, 고절연파괴전압 등의 우수한 유전 특성을 갖는 내장형 커패시터(embedded capacitor)에 관한 것이다. 본 발명에 따른 내장형 커패시터는 소정의 기판 상에 형성된 제 1 전극; 상기 제 1 전극 상에 형성되며 억셉터(acceptor)가 도핑된 비정질 (Ba 1 - x Sr x )TiO 3 (BST)막 - 여기서, x=0.3~1 - 및 상기 비정질 BST막 상에 형성된 제 2 전극을 포함한다. 내장형 캐패시터, PCB(printed circuit board), 억셉터(acceptor), 억셉터 레벨, BST, 유전체막, PZT, 스퍼터링(sputtering), PLD(Pulsed laser deposition)
Abstract:
An ultra-sensitive metal oxide gas sensor and a method for manufacturing the same are provided to maximize the diffusion of gas by providing macro pores between nano-fibers. An ultra-sensitive metal oxide gas sensor includes a sensor electrode and a porous metal oxide thin film. The porous metal oxide thin film is formed on the sensor electrode and has a network structure of nano-fibers including nano-rods of single crystals. The average width of the single crystals is 10 to 20 nm and the average length thereof is 50 to 100 nm. The porous metal oxide thin film has first pores between the nano-fibers and second pores between the nano-rods. The average size of the first pores is 55 to 70nm and the average size of the second pores is 10 to 25nm.
Abstract:
A method for fabricating three-dimensional nano-fiber tube structure array is provided to maximize surface of polymer or metal materials and to produce the nano-structure with horizontal and vertical orientation by applying interfacial polymerization and evaporation to increase the surface area of the three-dimensional structure. The method includes the steps of: (i) placing a porous polymer film over an oxidant or monomer initiator in aqueous solution form; (ii) developing monomer over an interface between aqueous phase and organic solvent phase, which are immiscible each other, by pouring a solution containing monomer in an organic solvent onto the porous polymer film, so that the monomer based polymer is formed on surface of the polymer film; (iii) forming three-dimensional nano-structure array by removing the porous polymer film after formation of the monomer based polymer; and (iv) forming the three-dimensional nano-structure composite by coating the array with metal or inorganic oxide.
Abstract:
본 발명은 이차전지용 전극 및 그 제조 방법에 관한 것이다. 이차전지용 전극은 i) 기판, 및 ii) 기판 위에 위치하는 박막층을 포함한다. 박막층은 응집체들을 포함하고, 응집체들은 i) 전극 활물질 나노입자, 및 ii) 전극 활물질 나노입자와 함께 혼합된 카본 입자를 포함한다. 이차전지, 카본입자, 나노입자, 전기분사, 전극 활물질
Abstract:
본 발명은 가스센서 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 촉매가 함유된 다공성 구조의 금속산화물 박층을 감지소재로 이용한 가스센서 및 그 제조방법에 관한 것이다. 이를 위해, 본 발명은 센서 기판 위에 희생입자가 균일하게 분산된 희생입자층을 형성하는 단계; 상기 희생입자층 위에 스퍼터링 방법을 이용하여 촉매가 포함된 금속산화물 감지층을 형성하는 단계; 및 상기 촉매가 포함된 금속산화물 감지층을 열처리하여 상기 희생입자층을 제거하여 촉매가 포함된 다공성 금속산화물 감지층을 얻는 단계;를 포함하는 것을 특징으로 하는 가스센서의 제조방법을 제공한다. 기판, 전극, 촉매, 금속산화물, 다공성, 희생입자층
Abstract:
PURPOSE: A method for manufacturing silicon carbide nanofiber using an emulsion electro-spinning method and the silicon carbide nanofiber manufactured by the same are provided to improve the specific surface area and thermal-mechanical stability of the silicon carbide nanofiber by thermally treating complex nanofiber in a core-shell structure. CONSTITUTION: Complex nanofiber in a core-shell structure includes a fibrous core containing a silicon carbide precursor and a shell containing a water soluble polymer. Mono-crystalline silicon carbide nanofiber is obtained by thermally treating the complex nanofiber. A method for manufacturing the silicon carbide nanofiber includes the following: A solution containing a silicon carbide nanofiber is prepared by dissolving a silicon carbide precursor in a non-polar solvent. A surfactant, a polar solvent, and a water soluble polymer are mixed with the solution containing the silicon carbide nanofiber to obtain an oil-in-water emulsion for electrospinning(a). The oil-in-water emulsion is electrospun to obtain the complex nanofiber(b). The complex nanofiber is thermally treated to obtain the silicon carbide nanofiber(c).
Abstract:
본 발명은 집전체, 집전체 상의 음극활물질 및 상기 음극활물질 상의 절연층을 포함하고, 절연층은 절연성 나노 물질들이 자기조립되어 이루어진 응집체들을 포함하는 것인 이차전지용 음극, 특히 응집체가 구형, 도우넛형 및 타원형으로 이루어진 군에서 선택된 적어도 어느 하나의 형태인 이차전지용 음극에 관한 것이다. 또한, (a) 절연성 나노 물질이 분산된 분사용액을 형성하는 단계, 및 (b) 집전체 위의 음극활물질 상에 상기 분사용액을 전기분사하여, 응집체를 포함하는 절연층을 형성하는 단계를 포함하는 이차전지용 음극의 제조방법과, 특히 응집체가 구형, 도우넛형 및 타원형으로 이루어진 군에서 선택된 적어도 어느 하나의 형태인 이차전지용 음극의 제조방법을 제공한다.