Abstract:
A method and system for an enhanced uplink (EU) operation in a wireless communication system during soft handover. The system comprises a wireless transmit/receive unit (WTRU), at least two Node-Bs, and a radio network controller (RNC). One Node-B may be designated as a primary Node-B, and the primary Node-B may control EU operation during soft handover including uplink scheduling and hybrid automatic repeat request (H-ARQ). Soft buffer corruption is avoided during soft handover by controlling H-ARQ by the primary Node-B. Alternatively, an RNC may control EU operation during soft handover including H-ARQ. In this case, an RNC generates final acknowledge/non-acknowledge (ACK/NACK) decision based on the error check results of the Node-Bs.
Abstract:
A method for determining uplink power requirements for a transceiver in a wireless communications system includes obtaining measurements from a beacon signal (406) occupying a first timeslot in a frame; obtaining measurements from at least one additional channel (108) having a known transmitted signal strength and occupying a second timeslot in the frame; and utilizing the measurements to determine a path loss estimate (110).
Abstract:
An interference signal code power (ISCP) measurement is estimated in a time division multiple access/code division multiple access communication system. Signals transmitted in a particular time slot are received. A power level of the transmitted received signals of the particular time slot is measured. An association of ISCP values with measured power levels is provided. The measured power level is used to estimate an ISCP value. The estimated ISCP value is associated with that measured power level.
Abstract:
A wireless communication method and apparatus for transferring buffered enhanced uplink (EU) data from a wireless transmit/receive unit (WTRU), i.e., a mobile station, to a Node-B. The EU data is generated and stored in a buffer of the WTRU. The WTRU transmits a message to the Node-B including a request for a desired transport format combination (TFC) or data traffic indicator. The Node-B schedules one or more allowed EU data transmissions between the WTRU and the Node-B by transmitting an EU data scheduling message to the WTRU. The WTRU transmits all of the EU data stored in the buffer to the Node-B if the allowed EU data transmissions are sufficient to support transmission of all of the EU data stored in the buffer. Otherwise, the WTRU transmits a portion of the EU data along with the desired TFC or detailed traffic volume measurement (TVM) information to the Node-B.
Abstract:
A method and wireless communication system for providing channel assignment information used to support an uplink (UL) channel and a downlink (DL) channel. The system includes at least one Node-B and at least one wireless transmit/receive unit (WTRU). The WTRU communicates with the Node-B via a common control channel, the UL channel and the DL channel. The WTRU receives a message from the Node-B via the common control channel. The message includes an indication of whether the message is intended for assigning radio resources to the UL channel or the DL channel. The WTRU determines whether the message is intended for the WTRU and, if so, the WTRU determines whether the message is for assigning radio resources to the UL channel or the DL channel. The WTRU takes an appropriate action based on whether the message is for assigning radio resources to the UL channel or the DL channel.
Abstract:
A medium access control (MAC) layer architecture and functionality for supporting enhanced uplink (EU). A MAC entity for EU, (i.e., a MAC-e entity) (120), is incorporated into a wireless transmit/receive unit (WTRU), a Node-B and a radio network controller (RNC). The WTRU MAC-e handles hybrid-automatic repeat request (H-ARQ) (128) transmissions and retransmissions, priority handling, MAC-e (120) multiplexing, and transport format combination (TFC) (126) selection. The Node-B MAC-e (120) entity handles H-ARQ (128) transmissions and retransmissions, E-DCH (102) scheduling and MAC-e (120) de-multiplexing. The RNC MAC-e entity provides in-sequence delivery and handles combining of data from different Node-Bs.
Title translation:VERFAHREN UND SYSTEM ZUR REGELUNG DER SENDELEISTUNG EINESABWÄRTSSTRECKEN-SIGNALISIERUNGSKANALS AUF DER BASIS VON AUSFALLSTATISTIKEN DER ERWEITERTENAUFWÄRTSSTRECKENÜBERTRAGUNG
Abstract:
A method and system for controlling the transmission power of at least one downlink (DL) enhanced uplink (EU) signaling channel such that enhanced dedicated channel (E-DCH) DL signaling is delivered efficiently and reliably. The system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). At least one of the WTRU and the Node-B compute EU transmission failure statistics on the DL EU signaling channel and report the EU transmission failure statistics to the RNC. The RNC then adjusts a transmission power offset of the DL EU signaling channel to be used in determining transmission power level of the DL EU signaling channel at the Node-B based on the EU transmission failure statistics.
Abstract:
A method and wireless communication system for requesting and obtaining transmit power control (TPC) information. The system includes at least one access point (AP) and at least one wireless transmit/receive unit (WTRU). When the AP decides to adapt the transmit power level of the WTRU, the AP transmits a TPC request frame to the WTRU. In response to receiving the TPC request frame, the WTRU performs one or more physical measurements and sends a TPC report frame back to the AP.
Abstract:
A received channel power indicator (RCPI) value is used as a measure of the received RF power in the selected channel, measured at the antenna connector. This parameter is a measure by the PHY sublayer of the received RF power in the channel measured over the PLCP preamble and over the entire received frame. RCPI is a monotonically increasing, logarithmic function of the received power level defined in dBm.
Abstract:
A code is produce for use in scrambling or descrambling data associated with a high speed shared control channel (HS-SSCH) for a particular user equipment. A user identification of the particular user equipment comprises L bits. A 1/2 rate convolutional encoder (14) processes at least the bits of the user identification by a 1/2 rate convolutional code to produce the code.