Abstract:
A method for data related downlink signaling including selectively tailoring the UE ID to create a UE ID value (408A) to a data field (402) to create a data mask (411). This data mask (411) is then encoded with a CRC generator (404) to produce (404) and transmitted with the data field (402) to provide CRC-related functions. An alternative embodiment discloses initializing with UE identification prior to CRC generation. This implicitly includes the UE ID within the CRC without requiring additional overhead signaling.
Abstract:
Data of a time transmission interval is to be transmitted in a wireless communication system. The wireless communication system uses adaptive modulation and coding and has automatic repeat request mechanism. A transmission time interval has a plurality of transport block sets. The transport block sets are transmitted with a first specified modulation and coding scheme. Each transport block set is received and a determination is made as to whether the transport block sets meet a specified quality. When the specified quality is not met, a repeat request is transmitted. The specified modulation and coding scheme is changed to a second specified modulation and coding scheme that may support a reduced number of TBS's within the transmission time interval. In response to the repeat request, at least one of the transport block sets is retransmitted. The retransmitted transport block set is received. The retransmitted transport block set may be combined with a corresponding previously received transport block set.
Abstract:
A medium access control (MAC) architecture determines transmission latency and block error rate requirements for a plurality of data flows, each data flow having an associated priority and each data flow comprising a plurality of data blocks. The MAC architecture specifies a scheduling entity (53) that determines when transmissions are serviced, and by which hybrid automatic repeat request (H-ARQ) entity. H-ARQ entities (52a, 52b) determines whether each prior block had been successfully transmitted and, if not, request retransmission of unsuccessfully transmitted data blocks. The scheduling of the data blocks take into account whether or not the previously transmitted data blocks require retransmission. The MAC architecture allows the scheduling entity the ability to initiate new transmissions at any time and to reinitiate previously unsuccessful transmissions at any time.
Abstract:
Data of a transport block set is to be transmitted in a wireless communication system. The wireless communication system (figure 5) uses adaptive modulation and coding (34) and has a physical layer hybrid automatic repeat request mechanism (40). Segmentation information for potential segmentation of the transport block set is provided (46). The transport block set is transmitted with a first specified modulation and coding scheme. The transport bock set is received (38) and whether the received transport block set is determined to meet a specified quality. When the specified quality is not met, a repeat request (40) is transmitted. The first specified modulation and coding set is changed to a second specified modulation and coding set. In response to the repeat request, the transmit block set is segmented into a plurality of segments (48) supported by the second specified modulation and coding set (34) in accordance with the provided segmentation information. The segments are transmitted and at least two of the segments are transmitted separately. The transmitted segments are received (38). The segmentation process may be applied more than once for a particular TBS transmission.
Abstract:
A criterion for biasing a binary decision requiring an unequal protection (Fig 1) which utilizes a measured signal to interference ratio (SIR). The SIR may be derived from a determination of channel estimation. The SIR is compared against a threshold, the threshold being selected to bias the decision toward a NACK as opposed to an ACK determination. The technique is advantageous for providing biased binary decisions for high speed downlink packets (HSDP) but may be utilized for both uplink and downlink applications.
Abstract:
A stopping rule for Turbo Decoding (14) is applied for both good and bad code blocks in a received data stream. The iteration (26) either converges or diverges. Rule testing may be used for H-ARQ acknowledgement generation: if the iteration converges, an ACK (28) is generated and if the iteration diverges, a NACK (32) is generated. Optionally, the maximum number of decoding iterations (34) may dynamically selected based on MCS levels.
Abstract:
A code is produce for use in scrambling or descrambling data associated with a high speed shared control channel (HS-SSCH) for a particular user equipment. A user identification of the particular user equipment comprises L bits. A 1/2 rate convolutional encoder (14) processes at least the bits of the user identification by a 1/2 rate convolutional code to produce the code.
Abstract:
A medium access control-high speed (MAC-hs) comprises a hybrid automatic repeat request (H-ARQ) device configured to receive data blocks over a wideband-code division multiple access (W-CDMA) high speed-downlink shared channel (HS-DSCH). The H-ARQ device generates an acknowledgement (ACK) or negative acknowledgement (NACK) for each said data block received. Each received data block having a transmission sequence number. The H-ARQ device receives a new transmission instead of a pending retransmission at any time. At least one reordering device has an input configured to receive an output of the H-ARQ device and the at least one reordering device configured to reorder the received data blocks based on each received data block's transmission sequence number (TSN). Received data blocks are immediately forwarded for processing for higher layers when the received data blocks are received in sequence.