Abstract:
Methods, systems, and devices for wireless communication are described for slot structures using guard intervals in a single carrier waveform. Techniques provide for generating a first waveform for control information or reference signal transmissions in a first subset of symbols, and generating a second waveform for data to be transmitted in a second subset of symbols. A combination waveform may be generated based on the first and second waveforms that is transmitted to a receiver, such as by concatenating the first and second waveforms. The first waveform may be generated by appending a guard interval (GI) sequence to a reference signal or control information, and performing a discrete Fourier transform spread frequency division multiplexing (DFT-s-FDM) procedure. The second waveform may be generated by appending the GI to data to be transmitted in each symbol of the second subset of symbols, and performing the DFT-s-FDM procedure.
Abstract:
Channel reservation systems and methods are disclosed herein, which schedule transmissions on a shared radio medium that is shared by a plurality of licensed network operators. In embodiments, priority access is pre-assigned to the network and the method determines whether to send a transmission based at least on the transmitter's priority class as compared to another transmitter's priority class and to which transmitter the time slot of a signal is dedicated. In embodiments, priority access may not be preassigned to the network and pre-grants may be used in conjunction with CR-Ts and CR-Rs to determine whether a transmitter transmits.
Abstract:
Methods and apparatuses for transmitting and detecting channel reservation preamble in a NR shared spectrum are described. An aspect may include determining whether a first reservation preamble of a first operator is received on a first time slot of multiple time slots of a downlink channel from a first network entity, and transmitting a second reservation preamble of the first operator on an uplink channel to the second network entity. Another aspect may include generating a first reservation preamble of a first operator based on at least one of a compressed representation in a signal space, a basis function of the signal space, or a CAZAC sequences; and transmitting, on a first times lot of multiple time slots of a downlink channel, the first reservation preamble of the first operator to at least a UE. In another aspect, the SFN transmission of the first and second reservation preambles, and the low latency detection methods of the reservation preambles have been disclosed.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) and a base station may establish narrowband communications. The base station may configure positioning reference signal (PRS) resources based at least in part on wideband or narrowband transmissions, and a UE may receive the PRS transmissions over one or more narrowband regions. The UE, may determine PRS resources and receive portions of wideband PRS transmissions that are transmitted in one or more narrowband regions of the system bandwidth. The base station may configure PRS resources separately for narrowband devices, such as according to a bandwidth of the narrowband devices or with a single PRS tone per symbol compared to two PRS tones per symbol that may be used for wideband PRS transmissions. The base station may perform positioning measurements for a UE based at least in part on timing of uplink transmissions from the UE.
Abstract:
The apparatus enables pilot signals, whether single tone or multiple tone, that achieve a very low PAPR. After receiving an allocation for multiple tones, the apparatus determines a pilot signal for transmission. The apparatus may select tones from the allocation for transmission of a pilot signal based on a pilot pattern. The pilot pattern may comprise a tone sequence that identifies a sequences of tones, wherein each tone in the tone sequence of identifies one tone of multiple tones for transmission of a pilot signal during a given pilot symbol period. The pilot signal may also comprise a signal sequence. The apparatus may generate a set of multi-tone modulated pilot sequences, select a pilot sequence based on a cross-correlation property, and transmit a pilot signal using multiple tones of the allocation using the selected pilot sequence.
Abstract:
Aspects of the present disclosure provide techniques for design of synchronization signals for narrowband operation and other clean-slate, OFDM based systems such as enhanced component carrier (eCC) systems. An example method is provided for operations which may be performed by a BS to generate and transmit a dual-layer PSS, and correspondingly, techniques for a UE to detect the dual-layer PSS. The PSS may be generated utilizing a binary code cover and at least one sequence applied to a number of symbols within one or more subframes of a frame.
Abstract:
Methods, systems, and devices are described for wireless communication at a device. A device may distinguish a preamble sent from a device configured for a first RAT (e.g., WLAN, Wi-Fi, etc.) from a preamble sent from a device configured for a second RAT (e.g., LTE, LTE-A, LTE-U, etc.). A wireless device associated with a second RAT may transmit a dual-use preamble over a contention-based frequency channel. The dual-use preamble may function as a valid preamble for a first RAT and may be received and decoded by devices associated with the first RAT in addition to devices associated with the second RAT. The dual-use preamble may also include a signature associated with the second RAT. The signature may be embedded with the preamble such that it minimizes interference with the valid preamble and be detected by devices associated with the second RAT.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, an indication that a cell associated with the base station does not support reduced capability UEs, wherein the UE is capable of operating in a first mode that is associated with reduced capability UEs and a second mode that is not associated with reduced capability UEs. The UE may communicate, in the second mode, with the base station to establish a connection with the cell based at least in part on at least one of: the UE supporting one or more capabilities associated with connecting with the cell, or no cells that support reduced capability UEs being available. Numerous other aspects are described.
Abstract:
A user equipment (UE) having a first capability associated with a lower maximum UE bandwidth than a second capability performs at least a part of initial access based on an initial downlink bandwidth part (BWP) that is shared among UEs having the first capability and UEs having the second capability. The UE switches, after the initial access, to an active downlink BWP and an active uplink BWP that are dedicated for the UEs having the first capability to perform random access, paging, system acquisition, measurement and data communication procedures.
Abstract:
An apparatus for wireless communication includes a transmitter configured to communicate with a base station based on a first uplink bandwidth part (BWP) that includes a first frequency subset and that further includes a second frequency subset. The apparatus further includes a receiver configured to receive, from the base station, one or more messages including a frequency hopping indicator that specifies whether a frequency hopping mode is enabled or disabled. The transmitter is further configured to transmit, to the base station, an uplink control channel transmission using both the first frequency subset and the second frequency subset based on the frequency hopping indicator specifying that the frequency hopping mode is enabled or using one of the first frequency subset or the second frequency subset based on the frequency hopping indicator specifying that the frequency hopping mode is disabled.