Abstract:
The present invention generally relates to a MEMS device and a method of manufacture thereof. The RF electrode, and hence, the dielectric layer thereover, has a curved upper surface that substantially matches the contact area of the bottom surface of the movable plate. As such, the movable plate is able to have good contact with the dielectric layer and thus, good capacitance is achieved.
Abstract:
The present invention generally relates to a MEMS DVC. The MEMS DVC has an RF electrode and is formed above a CMOS substrate. To reduce noise in the RF signal, a poly-resistor that is connected between a waveform controller and the electrodes of the MEMS element, may be surrounded by an isolated p-well or an isolated n-well. The isolated well is coupled to an RF ground shield that is disposed between the poly-resistor and the MEMS element. Due to the presence of the isolated well that surrounds the poly-resistor, the substrate resistance does not influence the dynamic behavior of each MEMS element in the MEMS DVC and noise in the RF signal is reduced.
Abstract:
A method for reducing stiction in a MEMS device by decreasing surface area between two surfaces that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of one or both of the surfaces. The increased roughness is provided by forming a micro-masking layer on a sacrificial layer used in formation of the MEMS device, and then etching the surface of the sacrificial layer. The micro-masking layer can be formed using nanoclusters (520). When a next portion of the MEMS device is formed on the sacrificial layer (810), this portion will take on the roughness characteristics imparted on the sacrificial layer by the etch process. The rougher surface (910) decreases the surface area available for contact in the MEMS device and, in turn, decreases the area through which stiction can be imparted.
Abstract:
The present invention generally relates to an RF MEMS DVC and a method for manufacture thereof. To ensure that undesired grain growth does not occur and contribute to an uneven RF electrode, a multilayer stack comprising an AlCu layer and a layer containing titanium may be used. The titanium diffuses into the AlCu layer at higher temperatures such that the grain growth of the AlCu will be inhibited and the switching element can be fabricated with a consistent structure, which leads to a consistent, predictable capacitance during operation.
Abstract:
The present invention generally relates to a method of operating a MEMS DVC while minimizing impact of the MEMS device on contact surfaces. By reducing the drive voltage upon the pull-in movement of the MEMS device, the acceleration of the MEMS device towards the contact surface is reduced and thus, the impact velocity is reduced and less damage of the MEMS DVC device occurs.
Abstract:
In a method for fabricating an electrostatic capacitance-type acceleration sensor having a capacitor which electrostatic capacitance between a movable electrode and a fixed electrode changes according to the displacement of the movable electrode, the method includes: a step of forming a groove on at least one of the surface of an insulative substrate and the surface of a semiconductor substrate; a step of forming a hole in the semiconductor substrate so as to penetrate the semiconductor substrate at a position communicating with a passage formed by the groove; and a step of forming an electrode extraction hole in the insulative substrate so as to penetrate the insulative substrate, at a position communicating with the passage formed by the groove.
Abstract:
Provided is a method of manufacturing an electromechanical transducer having a reduced variation in a breakdown strength caused by a variation in flatness of an insulating layer. In the method of manufacturing the electromechanical transducer, a first insulating layer (2) is formed on a first substrate (1), a barrier wall (3) is formed by removing a part of the first insulating layer, and a second insulating layer (10) is formed on a region of the first substrate after the part of the first insulating layer has been removed. Next, a gap is formed by bonding a second substrate (18) on the barrier wall, and a vibration film (23) that is opposed to the second insulating layer via the gap is formed from the second substrate. In the forming of the barrier wall, a height on a gap side in a direction vertical to the first substrate becomes lower than a height of a center portion.
Abstract:
The present invention relates to a MEMS, being developed for e.g. a mobile communication application, such as switch, tunable capacitor, tunable filter, phase shifter, multiplexer, voltage controlled oscillator, and tunable matching network. The volume change of phase-change layer is used for a bi-stable actuation of the MEMS device. The MEMS device comprises at least a bendable cantilever, a phase change layer, and electrodes. A process to implement this device and a method for using is given.
Abstract:
A MEMS structure that provides an improved way to selectively control electromechanical properties of a MEMS device with an applied voltage. The MEMS structure includes a capacitor element that comprises at least one stator element, and at least one rotor element suspended for motion parallel to a first direction in relation to the stator element. The stator element and the rotor element form at least one capacitor element, the capacitance of which varies according to displacement of the rotor element from an initial position. The stator element and the rotor element are mutually oriented such that in at least one range of displacements of the rotor element from an initial position, the second derivative of the capacitance with respect to the displacement has negative values.