Abstract:
La présente invention propose un spectromètre (100) pour l'analyse du spectre d'un faisceau lumineux amont (1) comportant une fente d'entrée (101) et des moyens de dispersion angulaire (130). Selon l'invention, les moyens de dispersion angulaire comprennent au moins un réseau de diffraction à séparation de polarisation qui est adapté, pour la pluralité de longueurs d'onde (l1, l2, l3), à diffracter un faisceau lumineux redressé (20) en des faisceaux lumineux diffractés (31, 32, 33) dans un même ordre de diffraction particulier du réseau de diffraction à séparation de polarisation qui est soit l'ordre de diffraction +1, soit l'ordre de diffraction -1, lorsque le faisceau lumineux redressé présente un état de polarisation redressé prédéterminé qui est circulaire; et le spectromètre comporte des moyens de modification de la polarisation (1100) disposés entre la fente d'entrée et les moyens de dispersion angulaire, qui sont adaptés à modifier l'état de polarisation du faisceau lumineux amont pour générer le faisceau lumineux redressé selon l'état de polarisation redressé prédéterminé.
Abstract:
Wavenumber linear spectrometers ( 310 ) are provided including an input ( 312 ) configured to receive electromagnetic radiation from an external source; collimating optics ( 314 ) configured to collimate the received electromagnetic radiation; a dispersive assembly ( 330 ) including first and second diffractive gratings ( 320, 322 ), wherein the first diffraction grating is configured in a first dispersive stage to receive the collimated electromagnetic radiation and wherein the dispersive assembly includes at least two dispersive stages configured to disperse the collimated input; and an imaging lens assembly ( 318 ) configured to image the electromagnetic radiation dispersed by the at least two dispersive stages onto a linear detection array ( 320 ) such that the variation in frequency spacing along the linear detection array is no greater than about 10%.
Abstract:
A dual pass monochromator for generating excitation radiation and isolating emission radiation at prescribed wavelengths, useful for analyzing florescence in multi-assay micro-titer plate readers is disclosed. The optically dispersive element can be used to receive radiation through an entrance aperture; isolate a prescribed wavelength band; and then direct the prescribed wavelength band through a first exit aperture onto a sample. The excited emissions from the sample can then be received back through the first exit aperture and be directed to the optically dispersive element to isolate the emission wavelength band and direct it onto a detector through a second exit aperture. Band pass elements can be optically coupled to the optically dispersive element to tune the excitation and emission wavelength bands. Band pass optical elements can be dispersive diffraction gratings, or non-dispersive optical filters. The dual pass monochromator can be modular and include a number of optically isolated compartments.
Abstract:
Eine Spektrometer-Anordnung (10) enthält eine Strahlungsqeulle (11) mit kontinuierlichem Spektrum, einen Vormonochromator (2) zur Erzeugung eines Spektrums mit relativ geringer Lineardispersion aus welchem ein Spektrenausschnitt selektierbar ist, dessen spektrale Bandbreite kleiner oder gleich der Bandbreite des freien Spektralbereiches derjenigen Ordnung im Echelle-Spektrum ist, in der die Mittenwellenlänge des selektierten Spektrenausschnitts mit maximaler Blazeeffektivität messbar ist, ein Echelle-Spektrometer (4) mit Mitteln zur Wellenlängenkalibrierung, einen Eintrittsspalt (21) an dem Vormonochromator (2), eine Zwischenspalt-Anordnung (3) mit einem Zwischenspalt und einen ortsauflösenden Strahlungsempfänger (5) in der Austrittsebene des Spektrometers zur Detektion von Wellenlängen-Spektren. Die Anordnung ist dadurch gekennzeichnet, daβ die Breite des Zwischenspalts (3) gröβer ist, als das durch den Vormonochromator am Ort des Zwischenspaltes entstehende monochromatische Bild des Eintrittspaltes und Mittel zur Kalibrierung des Vormonochromators vorgesehen sind, durch welche die auf den Detektor abgebildete Strahlung der Strahlungsquelle mit kontinuierlichen Spektrum auf eine Referenzposition kalibrierbar ist.
Abstract:
An optical system comprises a wearable device for measuring one or more physiological parameters. The physiological parameters may change in response to stretching of the hand or movement of fingers or thumb of the user, or the parameters may be related to blood constituents or blood flow. The wearable device comprises a light source with a plurality of semiconductor diodes and a detection system that measures reflected light from tissue comprising skin. The semiconductor diodes may be light emitting diodes or laser diodes. The signal to noise ratio for the output signal may be improved by synchronizing the detection system to the light source, increasing light intensity of at least one of the plurality of semiconductor diodes from an initial light intensity, and using change detection that compares light on versus light off for the detection system output. The wearable device is also configured to identify an object.
Abstract:
A monochromator apparatus for an optical spectrum analyzer may include a diffraction grating, a rotatable oblique prism reflector element with a non-right-angle apex angle, and a mirror. An input optical beam received from an input component may be diffracted by the grating element and reflected by a reflector element, where the reflector element may include a rotatable oblique prism with an apex angle that is different from a right angle. A mirror may reflect the reflected diffracted optical beam back to the reflector element and the grating element. An output optical beam from the grating element may be provided via an output element to a detection element for high resolution optical measurement. The oblique prism reflector element may reduce or eliminate a Littrow ghost effect or secondary ghost effects caused by the grating element.
Abstract:
A smart phone or tablet includes laser diodes, at least some of which may be pulsed and generate near-infrared light and include Bragg reflectors to direct light to tissue/skin. An array of laser diodes generates near-infrared light and has an assembly in front of the array that forms the light into a plurality of spots on the tissue/skin. A receiver includes detectors that receive light reflected from the tissue/skin. An infrared camera receives light reflected from the tissue/skin and generates data based on the received light. The smart phone or tablet is configured to generate a two-dimensional or three-dimensional image using at least part of the data from the infrared camera.
Abstract:
A wearable device includes a measurement device having light emitting diodes (LEDs) measuring a physiological parameter. The measurement device modulates the LEDs to generate an optical beam having a near-infrared wavelength between 700-2500 nanometers. Lenses receive and deliver the optical beam to tissue, which reflects the optical beam to a receiver having spatially separated detectors coupled to analog-to-digital converters configured to generate receiver outputs. The receiver captures light while the LEDs are off, and reflected light from the tissue while the LEDs are on, to generate first and second signals, respectively. Signal-to-noise ratio is improved by differencing the first and second signals and by differencing the receiver outputs. The measurement device further improves signal-to-noise ratio of the reflected optical beam by increasing light intensity of the LEDs relative to an initial light intensity. The measurement device generates an output signal representing a non-invasive measurement on blood contained within the tissue.
Abstract:
A wearable device for use with a smart phone or tablet includes a measurement device having a light source with a plurality of light emitting diodes (LEDs) for measuring physiological parameters and configured to generate an optical beam with wavelengths including a near-infrared wavelength between 700 and 2500 nanometers. The measurement device includes lenses configured to deliver the optical beam to a sample of skin or tissue, which reflects the optical beam to a receiver located a first distance from one of the LEDs and a different distance from another of the LEDs, and is also configured to generate an output signal representing a non-invasive measurement on blood contained within the sample. The wearable device is configured to communicate with the smart phone or tablet, which receives, processes, stores and displays the output signal with the processed output signal configured to be transmitted over a wireless transmission link.
Abstract:
A spectrometer having slit and detector elements located on the optical axis of the spectrometer, resulting in substantially increased spectral and spatial fields of the spectrometer. The spectrometer being more compact than current designs, while providing superior spatial and spectral image quality and resolution.