Abstract:
A double-sided optical inspection system is presented which may detect and classify particles, pits and scratches on thin film disks or wafers in a single scan of the surface. In one embodiment, the invention uses a pair of orthogonally oriented laser beams, one in the radial and one in the circumferential direction on both surfaces of the wafer or thin film disk. The scattered light from radial and circumferential beams is separated via their polarization or by the use of a dichroic mirror together with two different laser wavelengths.
Abstract:
An apparatus for inspecting the surface of a sheet-like object, comprising: a movable stage with an object mounted thereon; lighting means for lighting the object on the stage, particularly by making a plurality of illumination lights respectively having different wavelengths incident on the surface of the object from respective predetermined directions; image pickup means for fetching the image of the object under illumination of said lighting means as image data or the images of parts of the object as image data obtained on the respective different wavelengths; image data processing means for inspecting said image data for defects; and synchronization control means either for flashing the lighting means at a predetermined time interval just after the said stage commences its movement, synchronously with fetching the image data or for flashing the lighting means and simultaneously fetching the image data obtained on the respective different wavelengths, synchronously with the object on the stage reaching respective predetermined positions while moving said stage.
Abstract:
Analyzers and analyzer systems that include an analyzer for determining multiple label species, methods of using the analyzer and analyzer systems to analyze samples, are disclosed herein. The analyzer includes one or more sources of electromagnetic radiation to provide electromagnetic radiation at wavelengths within the excitation bands of one or more fluorophore species to an interrogation space that is translated through the sample to detect the presence or absence of molecules of different target analytes. The analyzer may also include one or more detectors configured to detect electromagnetic radiation emitted from the one or more fluorophore species. The analyzer for determining multiple target molecule species provided herein is useful for diagnostics because the concentration of multiple species of target molecules may be determined in a single sample and with a single system.
Abstract:
Analyte arrays such as solutes in a slab-shaped gel following electrophoresis, and particularly arrays that are in excess of 3 cm square and up to 25 cm square and higher, are imaged at distances of 5 cm or less by either forming sub-images of the entire array and stitching together the sub-images by computer-based stitching technology, or by using an array of thin-film photoresponsive elements that is coextensive with the analyte array to form a single image of the array.
Abstract:
A high-throughput optical suspension characterization instrument is disclosed, which can include hydraulically separate and at least partially transparent sample containers. A selection mechanism is operative to selectively direct light from a light source (12) through different ones of the sample containers along an optical axis, and an off-axis scattering detector (38,24) is responsive to scattered light from the light source after it has interacted with a sample. Phase analysis light scattering is used to determine the electrophoretic mobility and zeta potential of samples. A second instrument is disclosed, wherein all sample containers are illuminated simultaneously. Transmitted light is collected by a camera. The electrophoretic mobility and hydrodynamic size of the samples may be determined.
Abstract:
The disclosure is directed to systems and methods for precisely measuring birefringence properties of large-format samples of optical elements. A gantry-like configuration is employed for precise movement of birefringence measurement system components relative to the sample. There is also provided an effective large-format sample holder that adequately supports the sample to prevent induced birefringence therein while still presenting a large area of the sample to the unhindered passage of light.
Abstract:
The description relates to a device for handling, treating and observing small particles, especially biological particles. A first laser (4) generates light beams in a first wavelength range which are focussed by a first optical device (12, 13; 14, 15) and form an optical trap. A slide (22) holds corresponding particles. There is also a light source (17) for observation purposes and observation and recording devices for observing the particles and recording their behaviour. A second laser (3) generates light beams in a second wavelength range which are focussed so that particles on the slide may be treated. The optical devices for the light beams can be positioned and adjusted independently of each other and thus the light beams can be focussed in the same object plane of the slide at the start of treatment and observation independently of their wavelengths.