Abstract:
Biological cells in a liquid suspension are counted in an automated cell counter that focuses an image of the suspension on a digital imaging sensor that contains at least 4,000,000 pixels each having an area of 2 x 2 µm or less and that images a field of view of at least 3 mm2. The sensor enables the counter to compress the optical components into an optical path of less than 20 cm in height when arranged vertically with no changes in direction of the optical path as a whole, and the entire instrument has a footprint of less than 300 cm2. Activation of the light source, automated focusing of the sensor image, and digital cell counting are all initiated by the simple insertion of the sample holder into the instrument. The suspension is placed in a sample chamber in the form of a slide that is shaped to ensure proper orientation of the slide in the cell counter.
Abstract:
Systems and methods for performing cytometry using a linear light sensor. An illumination field, a line scanned by the linear light sensor, or both are swept across a cell to be imaged. Relative motion between the cell and the swept illumination may be created using a movable optical component or components, by adhering cells to a plate and transporting the plate or by other techniques.
Abstract:
Systems and method for detecting and measuring light emitted from a sample and having a large dynamic range, e.g., a range of luminous intensity covering six or more orders of magnitude, that may be difficult to fully detect using a single detector with a limited detection range. Simultaneous measurement of the emitted light in two intensity ranges is performed using two detectors, e.g., one including a photomultiplier tube (PMT) and the other including a solid state detector such as a photodiode.
Abstract:
Adherent cells bearing characteristics that are detectable only in the adherent state can be sorted on the basis of these characteristics independently of their adherent state, by applying a transformable label to the entire population of cells, both those bearing the characteristics of interest and those not, in their adherent state and identifying the locations of the cells of interest on the adherent surface. The cells of interest, or all cells other than those of interest, are then selectively treated to transform the labels and achieve differentiation between the cells of interest and the remaining cells. All cells are then released from the adherent state and sorted in the same manner as non-adherent cells but on the basis of whether the labels are transformed or not transformed.
Abstract:
Biological cells in a liquid suspension are counted in an automated cell counter that focuses an image of the suspension on a digital imaging sensor that contains at least 4,000,000 pixels each having an area of 2 x 2 μm or less and that images a field of view of at least 3 mm2. The sensor enables the counter to compress the optical components into an optical path of less than 20 cm in height when arranged vertically with no changes in direction of the optical path as a whole, and the entire instrument has a footprint of less than 300 cm2. Activation of the light source, automated focusing of the sensor image, and digital cell counting are all initiated by the simple insertion of the sample holder into the instrument. The suspension is placed in a sample chamber in the form of a slide that is shaped to ensure proper orientation of the slide in the cell counter.
Abstract:
A system for performing high-speed, high-resolution imaging cytometry utilizes a line-scan sensor. A cell to be characterized is transported past a scan region. An optical system focuses an image of a portion of the scan region onto at least one linear light sensor, and repeated readings of light falling on the sensor are taken while a cell is transported though the scan region. The system may image cells directly, or may excite fluorescence in the cells and image the resulting light emitted from the cell by fluorescence. The system may provide a narrow band of illumination at the scan region. The system may include various filters and imaging optics that enable simultaneous multicolor fluorescence imaging cytometry. Multiple linear sensors may be provided, and images gathered by the individual sensors may be combined to construct an image having improved signal-to-noise characteristics.
Abstract:
Adherent cells bearing characteristics that are detectable only in the adherent state can be sorted on the basis of these characteristics independently of their adherent state, by applying a transformable label to the entire population of cells, both those bearing the characteristics of interest and those not, in their adherent state and identifying the locations of the cells of interest on the adherent surface. The cells of interest, or all cells other than those of interest, are then selectively treated to transform the labels and achieve differentiation between the cells of interest and the remaining cells. All cells are then released from the adherent state and sorted in the same manner as non-adherent cells but on the basis of whether the labels are transformed or not transformed.
Abstract:
A cross sectional imaging system performs high-resolution, high-speed partial imaging of cells. Such a system may provide much of the information available from full imaging cytometry, but can be performed much more quickly, in part because the data analysis is greatly reduced in comparison with full image cytometry. The system includes a light source and a lens that focuses light from the light source onto a small spot in a scanning location. A transport mechanism causes relative motion between a cell in the scanning location and the spot. A sensor generates a signal indicating the intensity of light emanating from the cell as a result of illumination by the light source. The system repeatedly takes readings of the light intensity signal and characterizes the light intensity along a substantially linear path across the cell.
Abstract:
Biological cells in a liquid suspension are counted in an automated cell counter that focuses an image of the suspension on a digital imaging sensor that contains at least 4,000,000 pixels each having an area of 2 x 2 µm or less and that images a field of view of at least 3 mm2. The sensor enables the counter to compress the optical components into an optical path of less than 20 cm in height when arranged vertically with no changes in direction of the optical path as a whole, and the entire instrument has a footprint of less than 300 cm2. Activation of the light source, automated focusing of the sensor image, and digital cell counting are all initiated by the simple insertion of the sample holder into the instrument. The suspension is placed in a sample chamber in the form of a slide that is shaped to ensure proper orientation of the slide in the cell counter.
Abstract:
Flow cytometry system includes a flow element through which a cell is transported in a flowing fluid. Flow element includes a bore bounded by a wall. Light source is configured to illuminate the cell. Optical system receives light emanating from the cell and directs at least some of received light to a light sensor. The optical system includes a numerical-aperture-increasing lens at a wall of the flow element. At least some of the received light passes through the numerical-aperture-increasing lens. The flow cytometry system may also include a beam splitter that directs two wavelength bands of emanating light such that light in two wavelength band preferentially reach different sensing locations via different paths. The system may also include an optical element placed in one of the paths, shifting a focal location of the affected path to compensate for chromatic aberration of the numerical-aperture-increasing lens.