Abstract:
Various embodiments include integrated circuit structures having an off-axis in-hole capacitor. In some embodiments, an integrated circuit (IC) structure includes: a substrate layer having an upper surface; an IC chip at least partially contained within the substrate layer and aligned with a minor axis perpendicular to the upper surface of the substrate layer; an aperture in the substrate layer, the aperture physically separated from the IC chip; and a capacitor in the aperture and at least partially contained within the substrate layer, the capacitor being physically isolated from the IC chip, wherein the capacitor is aligned with an axis perpendicular to the upper surface of the substrate layer and offset from the minor axis of the IC chip.
Abstract:
A panel of rectangular shape comprising a plurality of electric devices spread over the panel, a control unit including a microprocessor and a power supply, drivers for driving the electric devices based on control information received from the control unit and electric wiring connecting the control unit, the drivers and the electric devices, the shape of the panel being adaptable by removing one or more parts of the panel by cutting, sawing, milling, drilling or other suitable methods, wherein the control unit and the drivers are positioned closer to a first side of the panel than to a second side opposite the first side. The drivers and electric devices are partitioned into groups that each comprises one driver that exclusively drives the electric devices in that group.
Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
Provided are systems and methods for a control assembly including: a first film that is in-molded that includes decorative graphics, a front surface and a rear surface; and a second film molded to the rear surface of the first film having a printed circuit that includes sensors, control circuits and interconnects and a front and rear surface; and an internal connector.
Abstract:
A radio frequency module includes a module substrate having a main surface, a first circuit component arranged on the main surface, a resin member arranged on the main surface and covering a side surface of the first circuit component, a metal shield layer in contact with a top surface of the resin member and a top surface of the first circuit component, and an engraved portion provided on the top surface of the resin member. When the main surface is viewed in plan, the engraved portion does not overlap the first circuit component.
Abstract:
Provided are an electronic device and a manufacturing method therefor such that, when connecting a first electronic component configured to have a step difference near an external connection terminal to a second electronic component via wiring, the size increase of a manufacturing device can be avoided, wiring can be carried out at a low-cost, and the reliability of the wiring connections can be improved. An LCD (10) and an IC (20) are embedded and exposed in a resin molding (30) in such a manner that a connection electrode (13a) of the LCD (10) and an electrode of the IC (20) are positioned on the same plane.
Abstract:
Heat transfer devices and systems for thermally coupling electrical components to a heatsink can comprise one or more all-metal heat transfer device(s) thermally coupling at least one electrical component to a heatsink. A heat transfer device can comprise a metal cup attached to a metal heatsink, and a metal piston and a compliant device disposed in the cup. The piston is forcible to a secured first position, upon reflowing solder, while compressing the compliant device. Upon reflowing solder again, the compliant device causes the piston to bias and attach to the electrical component to provide an all-metal thermal path and absorb assembly tolerances to avoid using thermal gap fillers. A method is provided for thermally coupling a heatsink to a plurality of electrical components via a plurality of all-metal, expandable heat transfer devices.
Abstract:
An electronic circuit card comprises a printed circuit board (PCB) with electronic components thereon. The electronic components comprise drivers for transmitting TX signals and receivers for receiving RX signals, according to several groups of interface signals. There is further provided a connector edge, arranged at an edge of the card, and configured to allow the card to be connected to an external connector. This connector edge comprises two subsets of symmetric pins on respective (opposite) sides thereof. The drivers and the receivers are connected to the pins, for respectively conveying the TX signals and the RX signals. Pins are assigned such that, for each of the several groups of supported interface signals, any pin (of any of the subsets) connected to transmit TX signals is located opposite a pin (of the other subset) connected to receive RX signals. Pairs of consecutive pins (on each side) typically come in differential pairs.
Abstract:
An apparatus as associated method contemplating a housing and a midplane supported by the housing having a midplane connector. A printed circuit board (PCB) having a PCB connector is selectively connectable to the midplane connector. A plurality of data storage devices are arranged on the printed circuit board in a staggered pattern, each electrically connected to the PCB connector via a respective electrical trace in the PCB.
Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.