Abstract:
본 발명은 이산화탄소 흡수제에 관한 것으로서, 구체적으로는 이산화탄소 흡수속도가 빠르고 이산화탄소 흡수량이 증대되는 흡수제 및 이를 이용한 이산화탄소 포집 방법에 관한 것으로, 2-하이드록시에틸하이드라진(2-hydroxyethylhydrazine)에 모노에탄올아민(monoethanolamine, MEA) 또는 염화칼륨을 혼합한, 2-하이드록시에틸하이드라진(2-hydroxyethylhydrazine)을 포함하는 이산화탄소 흡수제 및 이를 이용한 이산화탄소 흡수방법을 제공한다.
Abstract:
The present invention relates to a catalyst for methanizing a synthetic gas and a preparation method thereof. According to the present invention, the preparation method of a direct mathanation catalyst, which is a molybdenum disulfide (MoS2) based catalyst, for a synthetic gas includes the steps of: grinding precursors containing sulfur and molybdenum; mixing the ground precursors with a material including a solvent; reacting the mixed materials obtained by the earlier step under an atmosphere of high pressure CO gas after placing the mixed material in a reactor; and activating the produced catalyst.
Abstract:
본원은 에테르로 관능화된 이미다졸륨 기반 이온성 액체 및 이를 이용한 이산화탄소 분리 방법에 관하여 개시한다. 본원의 에테르로 관능화된 이미다졸륨계 이온성 액체는 우수한 이산화탄소 흡수능을 가지며, 흡수된 이산화탄소는 가열 등을 통해 손쉽게 탈착이 가능하여, 사용의 편리성은 물론, 선택성, 열적 안정성 및 반복적 사용 및 오랜 사용수명으로 인해 CO 2 포집에 유용하게 사용될 수 있다.
Abstract:
본원은 고체 아민을 함침한 성형 제올라이트 및 그 제조방법에 관한 것이다. 본원의 방법으로 제조된 제올라이트는 고체 아민이 함침되지 않은 제올라이트 및 MEA가 함친된 제올라이트와 비교하여 월등한 이산화탄소 수착능을 갖는다. 또한 연소 배기 가스가 대기 중으로 배출되는 온도에서도 기존의 것과 비교하여 높은 흡착능을 가져, 이산화탄소 포집에 효과적으로 사용될 수 있다.
Abstract:
PURPOSE: A carbon dioxide absorbent with superior anticorrosion and a manufacturing method of the same are provided to minimize the corrosion of an apparatus for a carbon dioxide absorption process. CONSTITUTION: A carbon dioxide absorbent comprises 16 wt% or less of alkali carbonate, 10 wt% or less of a sterically hindered cyclic amine, and an anticorrosive agent. The anticorrosive agent is at least one selected from a group of ATP(2-aminothiophenol), potassium vanadium acid salt, sodium molybdate, sodium nitrite, sodium tungstate, sodium chromate, sodium benzoate, sodium metasilicate, trisodium phosphate, disodium phosphate, sodium borate, (C6H11)2NH_2NO_2, hexamethylene tetramine, diisopropylamine nitrate, and cyclohexylamine carbonate. The alkali carbonate is at least one selected from a group including potassium carbonate(K_2CO_3), sodium carbonate(Na_2CO_3), sodium hydroxide(NaOH), potassium hydroxide(KOH), potassium bicarbonate(KHCO_3), and sodium bicarbonate(NaHCO_3).
Abstract translation:目的:提供具有优异防腐蚀性的二氧化碳吸收剂及其制造方法,以使二氧化碳吸收过程的装置的腐蚀最小化。 构成:二氧化碳吸收剂包含16重量%或更少的碱金属碳酸盐,10重量%或更少的空间位阻环胺和防腐剂。 抗腐蚀剂是选自ATP(2-氨基苯硫酚),钒酸钾钾,钼酸钠,亚硝酸钠,钨酸钠,铬酸钠,苯甲酸钠,偏硅酸钠,磷酸三钠,磷酸二钠,硼酸钠中的至少一种 ,(C 6 H 11)2 NH 2 NO 2,六亚甲基四胺,硝酸二异丙胺和碳酸环己胺。 碱金属碳酸盐是选自碳酸钾(K 2 CO 3),碳酸钠(Na 2 CO 3),氢氧化钠(NaOH),氢氧化钾(KOH),碳酸氢钾(KHCO 3)和碳酸氢钠(NaHCO 3)的组中的至少一种。
Abstract:
PURPOSE: A continuous carbon dioxide collecting method for minimizing regeneration energy is provided to supply a carbon dioxide absorbent with a composition which minimizes salt generation. CONSTITUTION: A method for removing carbon dioxide includes: a step for bringing gas containing carbon dioxide into contact with a carbon dioxide absorbent in which a sterically hindered cyclic amine is added into alkali carbonate(S110); a step for absorbing carbon dioxide from the gas(S120); a step for separating salts from the absorbent(S130); and a step for regenerating the absorbent(S140). The salt separating process uses a decanter. The absorbent includes 20 wt% or less of the alkali carbonate and 10 wt% or less of the sterically hindered cyclic amine. The alkali carbonate is at least one selected from a group including potassium carbonate(K_2CO_3), sodium carbonate(Na_2CO_3), sodium hydroxide(NaOH), potassium hydroxide(KOH), potassium bicarbonate(KHCO_3), and sodium bicarbonate(NaHCO_3). [Reference numerals] (S110) Gas contacting step; (S120) Carbon dioxide absorbing step; (S130) Salt separating step; (S140) Absorbent regenerating step
Abstract:
PURPOSE: A real time analysis method the oxygen content in a reaction product in an organism originated lipid deoxygenation reaction process is provided to easily and rapidly measure the oxygen content in a reaction product which is a performance index and a key of a deoxygenation reaction so that a real time diagnosis can be easy. CONSTITUTION: A real time analysis method the oxygen content in a reaction product in an organism originated lipid deoxygenation reaction process is as follows. A part of a reaction product is inserted into a Fourier transform infrared rays analysis device. The oxygen content is calculated by converting measured an absorbance with respect to a carbonyl functional group at a specific frequency into the oxygen content. The measured absorbance with respect to the carbonyl functional group is 1,720cm. The absorbance with respect to the carbonyl functional group is converted so that the oxygen content is calculated according to a predetermined equation.
Abstract:
PURPOSE: A solution phase preparation method of a CIGS thin film and the CIGS thin film prepared thereby are provided to form a CIGS in a substrate without high price vacuum deposition equipment by using a liquid manufacturing process. CONSTITUTION: A copper precursor is dissolved in an alcohol-based solvent to be a solution of A, which is spread in a substrate. A substrate coated with the solution of A is dried for 1 minute under 200-250°C . An indium precursor, gallium precursor, selenium precursor are dissolved in a solution to be solution of B, which is coated on the substrate. The substrate is dried for 1 minute under 200°C~250°C. The surface of the substrate is cleaned and dried.
Abstract:
PURPOSE: A hydrocarbon producing method of lipid originated from organisms and hydrotalcite is provided to reduce the operational cost and the installation cost by producing hydrocarbon without using a precious metal catalyst or hydrogen. CONSTITUTION: A hydrocarbon producing method of lipid originated from organisms and hydrotalcite comprises the following steps: contacting raw materials with the hydrotalcite at 200~450deg C with the pressure of 0.1~15MPa; and removing oxygen through a decarboxylating or decarbonylating reaction. The hydrotalcite contains 30~80wt% of magnesium and the balance of aluminum oxide, and has the form of layered double hydroxide.
Abstract:
PURPOSE: An apparatus for removing ammonia from gas discharged during a carbon dioxide depositing process using an ammonia solution is provided to effectively remove the ammonia using the chemical irreversible reaction. CONSTITUTION: An apparatus for removing ammonia from gas discharged during a carbon dioxide depositing process using an ammonia solution comprises the following: an absorbing tower(20), a removal tower(30), a scrubber tower(50), a returning tower, and an ammonia removal device(10). The absorbing tower selectively absorbs carbon dioxide from exhaust gas using the ammonia solution. The removal tower degasses the carbon dioxide from the removal tower. The scrubber tower collects the gaseous ammonia from the absorbing tower. The returning tower separates the gaseous ammonia and water from the ammonia solution. The ammonia removal device removes the ammonia.