Abstract:
An antenna device includes a feed coil connected to a feed circuit, and a coil antenna disposed near the feed coil. A ferrite sheet, in which a magnetic loss term in a usable frequency band is relatively large, is provided between the feed coil and the coil antenna. The feed coil and the coil antenna are magnetically coupled to each other via the ferrite sheet. With this configuration, signal transmission efficiency between the feed coil and the coil antenna is enhanced.
Abstract:
An inductor bridge is configured to bridge-connect a first circuit and a second circuit to each other, and includes a flexible flat plate base body, a first connector at a first end portion of the base body and connected to the first circuit, a second connector at a second end portion of the base body and connected to the second circuit, and an inductor section in the base body between the first connector and the second connector. The inductor section includes conductor patterns including a plurality of layers. The inductor bridge further includes a bending portion between the inductor section and the first connector, and a slot at an inner side of the bending portion that reduces a thickness of the base body.
Abstract:
A circuit board includes a main portion and at least one uneven portion. The main portion is obtained by stacking a plurality of base sheets made of a flexible material in a predetermined direction and subjecting the stacked base sheets to compression bonding. The at least one uneven portion is provided on one of the base sheets. The uneven portion includes a concave portion and a convex portion extending in a direction perpendicular or substantially perpendicular to the predetermined direction. The concave portion is sunken in the predetermined direction. The convex portion protrudes in an opposite direction to the predetermined direction.
Abstract:
A high-frequency signal transmission line includes a dielectric body including dielectric layers stacked together, a linear signal line provided in the dielectric body, a first ground conductor provided at the dielectric body, at a first side of the signal line in a stacking direction so as to face the signal line, and a subsidiary member provided at the dielectric body, at a second side of the signal line in the stacking direction so as to face a central portion of the signal line in a line-width direction. In a sectional view along a plane perpendicular or substantially perpendicular to an extending direction of the signal line, the signal line is curved such that side portions of the signal line in the line-width direction are farther away from the first ground conductor than a central portion of the signal line in the line-width direction.
Abstract:
A high-frequency signal transmission line includes a dielectric element assembly including a plurality of dielectric layers laminated on each other, a linear signal line provided at the dielectric element assembly, and a first ground conductor provided on a first side in a direction of lamination relative to the signal line and including a plurality of openings arranged along the signal line. The dielectric layer positioned at an end of the first side in the direction of lamination includes an undulating portion provided on a first principal surface located on the first side in the direction of lamination, such that the undulating portion overlaps with the openings when viewed in a plan view in the direction of lamination.
Abstract:
An antenna device includes a multilayer body as a base body, an antenna coil, and a capacitor chip. The multilayer body includes a magnetic layer including a first main surface and a second main surface, a first non-magnetic layer provided on the first main surface of the magnetic layer, and a second non-magnetic layer provided on the second main surface of the magnetic layer. The antenna coil includes a first coil pattern provided with the first non-magnetic layer and a second coil pattern provided with the second non-magnetic layer. The capacitor chip is connected to the antenna coil and provided on the second non-magnetic layer.
Abstract:
An antenna includes antenna coil having a magnetic-material core and a coil conductor. The antenna coil is arranged toward a side of a planar conductor, such as a circuit board. Of the coil conductor, a first conductor part close to a first main face of the magnetic-material core and a second conductor part close to a second main face of the magnetic-material core are provided such that the first conductor part is not over the second conductor part in view from a line in a direction normal to the first main face or the second main face of the magnetic-material core. In addition, a coil axis of the coil conductor is orthogonal to the side of the planar conductor.
Abstract:
An antenna device includes a first coil wound in one direction and a second coil disposed adjacent to the first coil and wound in a direction opposite to the winding direction of the first coil and having conductor openings at the centers of wound coils, and a magnetic core. The magnetic core is inserted into the conductor opening of the first coil and the conductor opening of the second coil. A portion of a conductor line forming the first coil positioned farther away from the second coil than a portion of the conductor line forming the first coil positioned closer to the second coil, and a portion of a conductor line forming the second coil positioned farther away from the first coil than a portion of the conductor line forming the second coil positioned closer to the first coil, are disposed along the first main surface of the magnetic core.
Abstract:
A circuit board includes a first circuit board portion and a second circuit board portion. The first circuit board portion is provided with a first transmission line for a low-frequency signal or a low-speed signal, and the second circuit board portion is provided with a second transmission line for a high-frequency signal or a high-speed signal. The second circuit board portion is located on the first circuit board portion in a positional relationship in which the first transmission line and the second transmission line are side-by-side with each other. With this structure, signal leakage and interference between different signals are reduced or prevented in a line that transmits signals with different frequencies and different transmission speeds.
Abstract:
A first board includes a first insulating substrate including a first main surface, a first electrode pad, and a first resist film. The first electrode pad is a conductor pattern provided on the first main surface. The first resist film is provided on the first main surface and is located closer to the first electrode pad than any conductor provided on the first main surface. The first resist film is spaced away from the first electrode pad with a gap provided between the first resist film and the first electrode pad. The first resist film is thicker than the first electrode pad.