Abstract:
The ultrasonic cleaning unit comprises ultrasonic transducers (320) being positioned within a casing (310). The ultrasonic cleaning unit (300) comprises further at least one sensor (400) located within the casing (310). The at least one sensor (400) measures an indirect parameter that indicates whether one or several ultrasonic transducers (320) does not work in a proper way.
Abstract:
Устройство для очистки водяных скважин содержит скважинный прибор, состоящий из последовательно расположенных в одном корпусе электрогидравлического блока (7) с колебательным контуром и ультразвукового блока (4) с электроакустическими преобразователями (3), датчики давления (10) и потока (11), гидрофон (12), насос, ультразвуковой (13) и импульсный (14) генераторы, контрольное оборудование для датчиков (15), блок управления (16) скважинным прибором снабженный синхронизатором работы электрогидравлического (7) и ультразвукового (4) блоков, а также устройством для управления длительностью импульсов, частотой набивки и спектра сигнала колебательного контура электрогидравлического блока для изменения зоны воздействия. При этом в нижней части корпуса скважинного прибора расположены разрядная камера (8) и защитная крышка (9).
Abstract:
An ultrasonic cleaning apparatus comprising: a tank for in use receiving a cleaning liquid and an item to be cleaned; a plurality of transducers arranged, when driven, to direct ultrasonic pressure waves into the tank; and a controller arranged in use to drive the transducers. First and second transducers from the plurality of transducers are arranged in use to direct ultrasonic pressure waves into an overlapping volume; and the controller is arranged in use to drive the first and second transducers to produce ultrasonic pressure waves at different frequencies from each other. The controller is arranged to in use produce first and second drive signals for the transducers using first and second frequency generators to each switch between primary and secondary operation, with the sequential switching taking place to cause different combinations of primary and secondary operation for the first and second frequency generators to occur over time.
Abstract:
Methods of mitigating current overload of an ultrasonic system having an ultrasonic stack under load at startup are provided. The methods include beginning an ultrasonic cycle in the ultrasonic system having the ultrasonic stack that runs a closed loop phase control through the weld cycle by ramping up the power of the ultrasonic stack under load. During ramping up of the power of the ultrasonic stack under load, a controller lowers the phase to a negative phase. After ramping up the power of the ultrasonic stack under load is complete, the controller raises the phase to 0 degrees and the ultrasonic stack is operating at steady state and with the phase at 0 degrees.
Abstract:
Vorgeschlagen wird ein Verfahren zur Anregung von schallwellenerzeugenden Wandlern (7), die Betriebsfrequenzen aufweisen, die einen Wandlerfrequenzbereich definieren, bei dem ein Generator (9) ein elektrisches Antriebssignal für die Wandler (7) erzeugt, das den Wandlern (7) zugeführt wird, wobei der Generator (9) mit einer einstellbaren Durchlaufrate Frequenzdurchläufe in einem Frequenzdurchlaufbereich zwischen einer minimalen Frequenz (f min ) und einer maximalen Frequenz (f max ) durchführt, innerhalb welches Frequenzdurchlaufbereiches eine Zielfrequenz (f Ziel ) definiert wird, das dadurch gekennzeichnet ist, dass die minimale Frequenz (f min ), die maximale Frequenz (f max ) und die Zielfrequenz (f Ziel ) so gewählt werden, dass sich eine erste Frequenzdifferenz (Δf 1 ) zwischen der minimalen Frequenz (fmin) und der Zielfrequenz (f Ziel ) bei einer Anzahl an Frequenzdurchläufen betragsmäßig von einer zweiten Frequenzdifferenz (Δf 2 ) zwischen der maximalen Frequenz (f max ) und der Zielfrequenz (f Ziel ) unterscheidet, und wobei die minimale Frequenz (f min ) und/oder die maximale Frequenz (f max ) und/oder die Zielfrequenz (f Ziel ) nach wenigstens einem Frequenzdurchlauf so abgeändert wird, dass ein über alle durchgeführten Frequenzdurchläufe gebildeter arithmetischer Mittelwert der ersten Frequenzdifferenzen (Δf 1 ) und ein über alle Frequenzdurchläufe gebildeter arithmetischer Mittelwert der zweiten Frequenzdifferenzen (Δf 2 ) betragsmäßig im Wesentlichen gleich sind.
Abstract:
Devices and methods for pre-conditioning and/or post-conditioning a host fluid containing a second fluid or particulate are disclosed. The devices include a flow chamber having first opening and a particulate outlet. The devices can also include side openings and alignment, fluid, and particulate screens. An ultrasonic transducer can be driven to create an acoustic standing wave in the flow chamber, or alternatively be driven to excite the wall of the flow chamber in which it is located. This creates a uniformly stratified flow within the flow chamber, with the second fluid or particulate being aligned in planes in the fluid mixture. This permits the host fluid to be separated therefrom using the fluid screen and the particulate screen.
Abstract:
system and method of cleaning a substrate (202) includes a megasonic chamber (206) that includes a transducer (210) and a substrate (202). The transducer (210) is being oriented toward the substrate (202). A variable distance d separates the transducer (210) and the substrate (202). The system (200) also includes a dynamically adjustable RF generator (212) that has an output coupled to the transducer. The dynamically adjustable RF generator (212) can be controlled by a phase comparison of an oscillator output (306) voltage and a phase of an RF generator output voltage. The dynamically adjustable RF generator (212) can also be controlled by monitoring a peak voltage of an output signal and controlling the RF generator to maintain the peak voltage within a predetermined voltage range. The dynamically adjustable RF generator (212) can also be controlled by dynamically controlling a variable DC power supply voltage.
Abstract:
system and method of cleaning a substrate includes a megasonic chamber that includes a transducer and a substrate. The transducer is being oriented toward the substrate. A variable distance d separates the transducer and the substrate. The system also includes a dynamically adjustable RF generator that has an output coupled to the transducer. The dynamically adjustable RF generator can be controlled by a phase comparison of an oscillator output voltage and a phase of an RF generator output voltage. The dynamically adjustable RF generator can also be controlled by monitoring a peak voltage of an output signal and controlling the RF generator to maintain the peak voltage within a predetermined voltage range. The dynamically adjustable RF generator can also be controlled by dynamically controlling a variable DC power supply voltage.