Abstract:
A sensor element includes a piezoelectric body, a plurality of excitation electrodes, and a plurality of detecting electrodes. The piezoelectric body includes a frame and a driving arm and detecting arm which extend from the frame within a predetermined plane parallel to an xy plane in an orthogonal coordinate system xyz. The excitation electrodes are located on the driving arm. The detecting electrodes are located on the detecting arm enabling detection of a signal generated by bending deformation of the detecting arm in a z-axis direction. The detecting arm includes first and second arms. The first arm extends from the frame in the predetermined plane. The second arm extends from a front end side of the first arm toward a frame side within the predetermined plane. An end part of the second arm on the frame side is formed as a free end.
Abstract:
A system for detecting and evaluating environmental quantities and events is formed by a detection and evaluation device and a mobile phone, connected through a wireless connection. The device is enclosed in a containment casing housing a support carrying a plurality of inertial sensors and environmental sensors. A processing unit is coupled to the inertial sensors and to the environmental sensors. A wireless connection unit, is coupled to the processing unit and a wired connection port, is coupled to the processing unit. A programming connector is coupled to the processing unit and is configured to couple to an external programming unit to receive programming instructions of the processing unit. A storage structure is coupled to the processing unit and a power-supply unit supplied power in the detection and evaluation device. The mobile phone stores an application, which enables a basicuse mode, an expert use mode, and an advanced use mode.
Abstract:
Disclosed herein is a MEMS ASIC. In some examples, the MEMS ASIC can include a MEMS, an analog front end (AFE) amplifier, an analog-to-digital converter (ADC), an overload detector, and a high-ohmic (HO) block. The HO block and the MEMS can form a high-pass filter (HPF). The impedance of the HO block can be related to the DC operating level of the AFE amplifier and the cutoff frequency of the HPF. In some examples, an overload event can occur, and the overload detector can be configured to adjust the impedance of the HO block to reduce the settling time of the MEMS ASIC. Methods of using the MEMS ASIC to reduce the settling time of the MEMS ASIC due to an overload event are disclosed herein.
Abstract:
Matching layers configured for use with ultrasound transducers are disclosed herein. In one embodiment, a transducer stack can include a capacitive micromachined ultrasound transducer (CMUT), an acoustic lens, and a matching layer therebetween. The matching layer can be made from a compliant material (e.g. an elastomer and/or an liquid) and configured for use with CMUTs. The matching layer can include a bottom surface overlying a top surface of the transducer and a top surface underlying a bottom surface of the lens.
Abstract:
Disclosed herein is a gas sensing device comprising a dielectric membrane formed on a semiconductor substrate comprising a bulk-etched cavity portion, a heater located within or over the dielectric membrane, a material for sensing a gas which is located on one side of the membrane, a support structure located near the material, and a gas permeable region coupled to the support structure so as to protect the material.
Abstract:
A microelectromechanical system includes a membrane of amorphous carbon having a thickness between 1 nm and 50 nm, and for example between 3 nm and 20 nm.
Abstract:
A micro-electro-mechanical system (MEMS) magnetometer is provided for measuring magnetic field components along three orthogonal axes. The MEMS magnetometer includes a top cap wafer, a bottom cap wafer and a MEMS wafer having opposed top and bottom sides bonded respectively to the top and bottom cap wafers. The MEMS wafer includes a frame structure and current-carrying first, second and third magnetic field transducers. The top cap, bottom cap and MEMS wafer are electrically conductive and stacked along the third axis. The top cap wafer, bottom cap wafer and frame structure together form one or more cavities enclosing the magnetic field transducers. The MEMS magnetometer further includes first, second and third electrode assemblies, the first and second electrode assemblies being formed in the top and/or bottom cap wafers. Each electrode assembly is configured to sense an output of a respective magnetic field transducer induced by a respective magnetic field component.
Abstract:
A microelectromechanical system includes a membrane of amorphous carbon having a thickness between 1 nm and 50 nm, and for example between 3 nm and 20 nm.
Abstract:
Matching layers configured for use with ultrasound transducers are disclosed herein. In one embodiment, a transducer stack can include a capacitive micromachined ultrasound transducer (CMUT), an acoustic lens, and a matching layer therebetween. The matching layer can be made from a compliant material (e.g. an elastomer and/or an liquid) and configured for use with CMUTs. The matching layer can include a bottom surface overlying a top surface of the transducer and a top surface underlying a bottom surface of the lens.
Abstract:
A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.