Abstract:
A tiny power-assembly device driven by rotatory molecular motors are disclosed. The molecular motor power-supplying device includes multiple connecting members, multiple upper rotating arms, multiple lower rotating arms and multiple rotatory molecular motors. The F1-ATPase is optioned as the sample molecular motor of this device and is located between the upper rotating arm and the lower rotating arm. Each molecular motor is connected with a lower rotating arm through the α, β subunits and connected with a lower rotating arm by the γ subunit. The molecular motor power-supplying device can be driven to shorter (connecting members closely) or longer (connecting members separated far away) by the accumulated driving forces from the rotatory molecular motors.
Abstract:
A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 nullm or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
Abstract:
A microactuator includes a stationary element, a movable element, and a first microstructure. The stationary element is fixed on a substrate and has a plurality of stationary element electrodes arranged at a predetermined pitch. The movable element has a plurality of movable element electrodes opposing to the stationary element electrodes. The movable element is moved by applying a voltage across the stationary element and the movable element. The first microstructure is formed on at least one of the opposing surfaces of the movable element and the stationary element to prevent the movable element from attaching to the stationary element.
Abstract:
A micro mechanical component of the present invention comprises a base, and at least one drive portion supported on the base and relatively driving to the base, in which the drive portion is formed from a diamond layer. Thus, because the drive portion has excellent mechanical strength and modulus of elasticity, the operational performance can be greatly improved as a micro mechanical component processed in a fine shape, from the conventional level. Further, because the drive portion exhibits excellent device characteristics under severe circumstances, the range of applications as a micro mechanical component can be widely expanded from the conventional range.
Abstract:
PURPOSE: A motor driving device and method using an IPMC(Ionic Polymer-Metal Composite) actuator are provided to rotate a rotor using the IPMC actuator that is bent by voltage application. CONSTITUTION: A motor driving method using an IPMC actuator is as follows. An actuator, which is made of IPMC, is installed on a side of a rotor(20). When voltage is applied to the actuator, one end of the actuator pushes a side of the rotor so that the rotor is rotated. The actuator comprises a support bar(31) which is fixed to a fixing part and a driving part(32) which is vertically coupled to the center of the support bar.
Abstract:
PURPOSE: A micro reactor and a method for sampling a specimen by using the same are provided to sample a little amount of specimens without using a separate apparatus. CONSTITUTION: A micro reactor includes a disc having a rotational center. A plurality of reagent inlets(121) are formed on an upper surface of the disc. The reagent inlets(121) are provided by recessing the upper surface of the disc. A reaction chamber(140) is formed at an interior of the disc. A reagent outlet(123) is positioned at a circumferential direction of the disc about the reaction chamber(140). Reagent moving channels(131a,132) are formed in the disc such that first ends of the reagent moving channels(131a,132) are connected to the reaction chamber and second ends thereof are connected to the reagent outlet(123).
Abstract:
A cooling system is described. The cooling system includes a bottom plate, a support structure, and a cooling element. The bottom plate has orifices therein. The cooling element has a central axis and is supported by the support structure at the central axis. A first portion of the cooling element is on a first side of the central axis and a second portion of the cooling element is on a second side of the central axis opposite to the first side. The first and second portions of the cooling element are unpinned. The first portion and the second portion are configured to undergo vibrational motion when actuated to drive a fluid toward a heat-generating structure. The support structure couples the cooling element to the bottom plate. At least one of the support structure is an adhesive support structure or the support structure undergoes rotational motion in response to the vibrational motion. The adhesive support structure has at least one lateral dimension defined by a trench in the cooling element or the bottom plate.
Abstract:
A method for manufacturing a device having a three-dimensional magnetic structure includes applying or introducing magnetic particles onto or into a carrier element. A plurality of at least partly interconnected cavities are formed between the magnetic particles, which contact one another at points of contact, by coating the arrangement of magnetic particles and the carrier. The cavities are penetrated at least partly by the layer generated when coating, resulting in the three-dimensional magnetic structure. A conductor loop arrangement is provided on the carrier or a further carrier. When a current flows through the conductor loop, an inductance of the conductor loop is changed by the three-dimensional magnetic structure, or a force acts on the three-dimensional magnetic structure or the conductor loop by a magnetic field caused by the current flow, or when the position of the three-dimensional magnetic structure is changed, a current flow is induced through the conductor loop.
Abstract:
The invention includes miniature dots, miniature disks or miniature cylinders and methods of making the same by dispersing a particle in or on a dissolvable, meltable or etchable layer on a substrate, a portion of the particle exposed above a surface of the dissolvable, meltable or etchable layer; depositing a mask on the particles and the dissolvable substrate; removing the particles from the layer; etching an array of nanoholes in the substrate; depositing one or more metallic layers into the nanoholes to form an array of dots, disks or cylinders; and dissolving the dissolvable layer with a solvent to expose the dots, disks or cylinders. The dots, disks or cylinders can be included with two sets of microelectrodes for ultrahigh speed rotation of miniature motors, and/or can be designed with a magnetic configuration into miniature motors for uniform rotation speeds and prescribed angular displacement. The invention also includes modified diatom frustules, and miniature motors containing modified diatom frustules.
Abstract:
A scanning device includes a frame, having a central opening, and an array including a plurality of parallel mirrors contained within the central opening of the frame. Hinges respectively connect the mirrors to the frame and define respective, mutually-parallel axes of rotation of the mirrors relative to the frame. A main drive applies a driving force to the array so as to drive an oscillation of the mirrors about the hinges at a resonant frequency of the array. A sensor is configured to detect a discrepancy in a synchronization of the oscillation among the mirrors in the array, and an adjustment circuit applies a corrective signal to at least one of the mirrors in order to alleviate the detected discrepancy.