Abstract:
A dual backplate MEMS microphone system includes a flexible diaphragm sandwiched between two single-crystal silicon backplates. Such a MEMS microphone system may be formed by fabricating each backplate in a separate wafer, and then transferring one backplate from its wafer to the other wafer, to form two separate capacitors with the diaphragm.
Abstract:
A method for processing product wafers using carrier substrates is disclosed. The method includes a step of bonding a first carrier wafer to a first product wafer using a first temporary adhesion layer between a first carrier wafer surface and a first product wafer first surface. Another step includes bonding a second carrier wafer to a second product wafer using a second temporary adhesion layer between a second carrier wafer surface and a second product wafer surface. Another step includes bonding the first product wafer to the second product wafer using a permanent bond between a first product wafer second surface and a second product wafer first surface. In exemplary embodiments, at least one processing step is performed on the first product wafer after the first temporary carrier wafer is bonded to the first product wafer before the second product wafer is permanently bonded to the first product wafer.
Abstract:
The disclosed embodiments provide sensitive pixel arrays formed using solvent-assisted or unassisted release processes. Exemplary devices include detectors arrays, tunable optical instruments, deflectable mirrors, digital micro-mirrors, digital light processing chips, tunable optical micro-cavity resonators, acoustic sensors, acoustic actuators, acoustic transducer devices and capacitive zipper actuators to name a few.
Abstract:
Various methods for attaching a crystalline write pole onto an amorphous substrate and the resulting structures are described in detail herein. Further, the resulting structure may have a magnetic moment exceeding 2.4 Tesla. Still further, methods for depositing an epitaxial crystalline write pole on a crystalline seed or template material to ensure that the phase of the write pole is consistent with the high moment phase of the template material are also described in detail herein.
Abstract:
Provided are a manufacturing method of an inkjet print head, the inkjet print head and a drawing apparatus equipped with the inkjet print head. The manufacturing method includes: forming a separation assisting layer on a substrate; forming heating resistors, thin-film transistors and nozzles for ejecting liquid, on the separation assisting layer; separating the separation assisting layer from the substrate; forming a first heat-conductive layer on the opposite surface of the separation assisting layer from the nozzles; and forming an ink supply port for supplying ink to the nozzles from a first heat-conductive layer side of the inkjet print head.
Abstract:
The present invention relates to a method for producing a thin single crystal silicon having large surface area, and particularly relates to a method for producing a silicon micro and nanostructure on a silicon substrate (or wafer) and lifting off the silicon micro and nanostructure from the silicon substrate (or wafer) by metal-assisted etching. In this method, a thin single crystal silicon is produced in the simple processes of lifting off and transferring the silicon micro and nanostructure from the substrate by steps of depositing metal catalyst on the silicon wafer, vertically etching the substrate, laterally etching the substrate. And then, the surface of the substrate is processed, for example planarizing the surface of the substrate, to recycle the substrate for repeatedly producing thin single crystal silicons. Therefore, the substrate can be fully utilized, the purpose of decreasing the cost can be achieved and the application can be increased.
Abstract:
The present invention relates to thin membranes (such as graphene windows) and methods of aligned transfer of such thin membranes to substrates. The present invention further relates to devices that include such thin membranes.
Abstract:
A groove is formed on a handling member, on a face to be fixed to an element, the groove making up a portion of a channel that externally communicates in the state of being fixed to the element. The handling member is fixed so that the cleavage direction of the vibrating membrane and the edge direction of the groove of the handling member intersect. Thus, the probability that a membrane will break during handling or processing of the substrate is reduced, and the handling member can be quickly removed from the substrate.
Abstract:
The disclosed embodiments provide sensitive pixel arrays formed using solvent-assisted or unassisted release processes. Exemplary devices include detectors arrays, tunable optical instruments, deflectable mirrors, digital micro-mirrors, digital light processing chips, tunable optical micro-cavity resonators, acoustic sensors, acoustic actuators, acoustic transducer devices and capacitive zipper actuators to name a few.
Abstract:
The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.