Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being configured to be rolled and unrolled based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a first direction from a first side of the rollable structure to an opposite second side of the rollable structure.
Abstract:
Provided is a printed circuit board, including: a support substrate including a first region in which light emitting elements are mount, a second region extending from the first region, and a bending portion between the first region and the second region, an insulating substrate on the support substrate, wiring portions on the insulating substrate, and a protective layer on the wiring portions.
Abstract:
Flexible printed circuit (FPC) connector includes a flex circuit having first and second side surfaces and a thickness extending between the first and second side surfaces. The flex circuit includes a plurality of stacked substrate layers. The FPC connector also includes a conductive pathway extending through the flex circuit and a substrate protrusion coupled to the second side surface and projecting a distance away from the second side surface. The substrate protrusion is formed from at least one dielectric layer. The FPC connector also includes a contact pad that is directly coupled to at least one of the substrate protrusion or the second side surface of the flex circuit. The contact pad is electrically coupled to the conductive pathway.
Abstract:
A photovoltaic module includes: a flexible printed circuit; and a plurality of power generating elements mounted on the flexible printed circuit, wherein the flexible printed circuit includes a turning portion, and strip-shaped portions of the flexible printed circuit which are located on opposite sides of the turning portion are aligned so as to oppose each other.
Abstract:
An origami enabled manufacturing system. The system uses origami design principles to create functional materials, structures, devices and/or systems having an adjustable size and/or shape. An operational device can be coupled to a planar substrate shaped and sized to correspond to a desired origami shape of an origami pattern. A plurality of planar substrates can be coupled together by a plurality of connection members that corresponds to one or more crease of the origami pattern. An array of planar substrates can be formed that convert into a three dimensional structure with origami shape. The resulting three-dimensional structure provides smaller projection area, higher portability and deformability.