DUAL-GATE PMOS FIELD EFFECT TRANSISTOR WITH InGaAs CHANNEL

    公开(公告)号:US20190229182A1

    公开(公告)日:2019-07-25

    申请号:US15539478

    申请日:2016-12-28

    Abstract: The present disclosure relates to the field of semiconductor Integrated Circuit (IC) manufacture, and provides an InGaAs-based double-gate PMOS Field Effect Transistor (FET). The FET includes a bottom gate electrode, a bottom gate dielectric layer, a bottom gate interface control layer, an InGaAs channel layer, an upper interface control layer, a highly doped P-type GaAs layer, an ohmic contact layer, source/drain metal electrodes, a top gate dielectric layer and a top gate electrode. The source/drain metal electrodes are located on opposite sides of the ohmic contact layer. A gate trench structure is etched to an upper surface of the interface control layer between the source and drain metal electrodes. The top gate dielectric layer uniformly covers an inner surface of the gate trench structure, and the top gate electrode is provided on the top gate dielectric layer. The present disclosure provides a PMOS FET with better gate control functionality and a low interface density with the double-gate structure and interface control layer design, in order to meet the requirements of high-performance PMOS transistors.

    Transistor having a gate with a variable work function and method for manufacturing the same

    公开(公告)号:US10312345B2

    公开(公告)日:2019-06-04

    申请号:US15871690

    申请日:2018-01-15

    Abstract: The present disclosure provides a method for manufacturing a transistor having a gate with a variable work function, comprising: providing a semiconductor substrate; forming a dummy gate stack on the semiconductor substrate and performing ion implantation on an exposed area of the semiconductor substrate at both sides of the dummy gate stack to form source/drain regions; removing the dummy gate and annealing the source/drain regions; providing an atomic layer deposition reaction device; introducing a precursor source reactant into the atomic layer deposition reaction device; and controlling an environmental factor for the atomic layer deposition device to grow a work function metal layer. The present disclosure also provides a transistor having a gate with a variable work function. The present disclosure may adjust a variable work function, and may use the same material system to obtain an adjustable threshold voltage within an adjustable range.

    STI stress effect modeling method and device of an MOS device

    公开(公告)号:US10176287B2

    公开(公告)日:2019-01-08

    申请号:US14403938

    申请日:2014-04-25

    Abstract: The invention discloses an STI stress effect modeling method and device of an MOS device, and belongs to the technical field of parameter extraction modeling of devices. The method comprises the following steps: introducing the influence of temperature parameters on the STI stress effect of the MOS device, so as to form a function showing that the STI stress effect of the MOS device changes along with the temperature parameters; extracting the model parameter Model1 of the MOS device at normal temperature; on the basis of the Model1, extracting the parameter Model2 that the STI stress affects the properties of the MOS device at normal temperature; and on the basis of the Model2, extracting fitting parameters of the MOS device in the function so as to acquire final model parameters. The device comprises a first module, a second module, a third module and a fourth module. By establishing the function showing that the STI stress effect of the MOS device changes along with the temperature parameters, the influence of the temperature on the STI stress effect of the MOS device can be accurately described, so that the extracted model parameters are more accurate and reliable.

    A METHOD FOR OPERATING A SEMICONDUCTOR MEMORY

    公开(公告)号:US20180315484A1

    公开(公告)日:2018-11-01

    申请号:US15769619

    申请日:2015-11-23

    Inventor: Tianchun Ye

    CPC classification number: G11C16/08

    Abstract: A method for operating a semiconductor memory includes: randomizing a data of an operation address to obtain a random code; performing a combinational logic operation between the random code and the original data to obtain a randomized data, or performing a combinational logic operation between the randomized data and the random code to obtain a de-randomized data; saving the randomized data, or outputting the de-randomized data. According to the method for operating a semiconductor memory of the present invention, since a combinational logic or a non-iterative sequential logic is used to form a random sequence generation unit, the encoding/decoding process does not need to wait for a specific cycle, thus reducing the operation time and improving the chip performance.

Patent Agency Ranking