Abstract:
반도체 소자의 게이트 패턴 형성 방법을 제공한다. 본 발명은 반도체 기판 상에 절연막을 형성한 후, 상기 절연막 상에 불순물이 이온주입된 폴리실리콘막을 형성한다. 이어서, 상기 불순물이 이온주입된 폴리실리콘막 상에, 폴리실리콘의 함몰을 방지할 수 있는 실리콘막을 형성한 후, 상기 실리콘막 상에 텅스텐 실리사이드막, 텅스텐 질화막 및 텅스텐막을 순차적으로 형성한다. 다음에, 상기 텅스텐막 상에 하드 마스크막을 형성한 후, 상기 하드 마스크막, 텅스텐막, 텅스텐 질화막, 텅스텐 실리사이드막, 실리콘막, 불순물이 이온주입된 폴리실리콘막 및 절연막을 순차적으로 패터닝하여 게이트 패턴을 형성한다. 본 발명은 텅스텐 실리사이드막 형성 전에 불순물이 주입된 폴리실리콘막 상에 실리콘막(109)을 형성하여 폴리실리콘 함몰이 발생하지 않게 함으로써, 게이트 식각 공정에서 반도체 기판 상에 피팅(pitting)이 발생하지 않아 누설 전류(leakage current)의 증가를 억제하고, 반도체 소자의 특성의 악화를 방지할 수 있다.
Abstract:
콘택 패드를 포함하는 반도체 장치 및 이의 제조 방법이 개시되어 있다. 액티브 영역 및 필드 영역이 정의된 반도체 기판 상에 형성되는 게이트 구조물들, 상기 게이트 구조물들의 측면에 형성되는 제1 스페이서, 상기 게이트 구조물들 사이에 위치하는 반도체 기판의 액티브 영역 상에 상기 게이트 구조물보다 낮은 높이의 반도체 물질이 형성된 제1 콘택 패드, 상기 제1 콘택 패드 상에 위치하는 상기 제1 스페이서의 측면 및 상기 제1 콘택 패드에서 상기 필드 영역과 인접하는 일측면에 형성된 제2 스페이서, 상기 제1 콘택 패드 상에, 반도체 물질로 형성된 제2 콘택 패드를 포함하는 반도체 장치를 제공한다. 상기 반도체 장치의 콘택 패드는 쇼트 불량이 매우 감소된다.
Abstract:
PURPOSE: A method for forming a double gate electrode and a method for fabricating a semiconductor device including a double gate electrode are provided to minimize a shot channel effect by increasing length of a channel without extending length of a gate electrode, horizontally. CONSTITUTION: A tunnel is formed in parallel to the surface of a semiconductor substrate(100) of an active region, which is defined by a trench formed on an isolation region. The first insulating layer(116) is coated on an inner surface of the tunnel and an inner surface of the trench. The inside of the tunnel is filled up by forming a lower gate electrode. The lower gate electrode is extended to the inside of the trench. The second insulating layer is formed on the surface of the semiconductor substrate of the active region. A top gate electrode is formed on the second insulating layer of the upper part of the tunnel.
Abstract:
Metal oxide semiconductor transistors and devices with such transistors and methods of fabricating such transistors and devices are provided. Such transistors may have a silicon well region having a first surface and having spaced apart source and drain regions therein. A gate insulator is provided on the first surface of the silicon well region and disposed between the source and drain regions and a gate electrode is provided on the gate insulator. A region of insulating material is disposed between a first surface of the drain region and the silicon well region. The region of insulating material extends toward but not to the source region. A source electrode is provided that contacts the source region. A drain electrode contacts the drain region and the region of insulating material.
Abstract:
PURPOSE: A DRAM(Dynamic Random Access Memory) semiconductor device and its manufacturing method are provided to be capable of restraining the generation of leakage current. CONSTITUTION: A DRAM semiconductor device is provided with a semiconductor substrate(100), a plurality of gate stack patterns(108) formed at the upper portion of the semiconductor substrate, a source/drain region(110) formed at the predetermined inner portions of the semiconductor substrate by being aligned at both sidewalls of the gate stack pattern, and a spacer(116) formed at both sidewalls of the gate stack pattern. The DRAM semiconductor device further includes a silicon epitaxial layer(118) formed at the upper portion of the source/drain region, a metal silicide layer(120) formed at the upper portion of the silicon epitaxial layer, and a plurality of metal pads(126a,126b) formed at the metal silicide layer.
Abstract:
PURPOSE: A trench isolation method is provided to be capable of removing the dent generated in an isolation layer manufacturing by etching the isolation layer to a predetermined depth. CONSTITUTION: A plurality of trenches(104) are formed at a semiconductor substrate(101) by selectively etching predetermined portions. Then, a trench isolation layer(150) is formed by completely filling the trench. The edge portion of a lowermost layer of the trench isolation layer is simultaneously etched while selectively etching an active region of the semiconductor substrate. Preferably, the trench isolation layer is completed by sequentially forming a sidewall isolating layer(105), a liner(106a), and an isolation layer(107a) in the trench. Preferably, a thermal Cl2 etching process is carried out for selectively etching the active region of the semiconductor substrate.
Abstract:
A method of forming a semiconductor device using selective epitaxial growth (SEG) is provided. This method includes forming an insulating layer pattern having a window on a semiconductor substrate. The window exposes a predetermined region of the semiconductor substrate. The substrate having the window is cleaned, thereby removing any native oxide layer on the exposed substrate. The cleaned substrate is oxidized. Accordingly, a sacrificial oxide layer is formed thereon. The sacrificial oxide layer is removed. Thus, the exposed substrate has substantially no crystalline defects. A single crystalline semiconductor layer is then grown on the exposed substrate using SEG.