Abstract:
A system for controlling flight of an aircraft has sensors, a receiver, and a digital control system, all of which are carried aboard the aircraft. The sensors determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver receives transmitted data communicating the position and movement of a reference vehicle relative to the earth. The control system calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors and the receiver and then commands flight control devices on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The fuel cell compresses ambient air for an oxidizer, and operates with the fuel and oxidizer at pressures below one atmosphere. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
A system for controlling flight of an aircraft has sensors (37, 43), a receiver (45), and a digital control system (57), all of which are carried aboard the aircraft. The sensors (37, 43) determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver (45) receives transmitted data (51, 55) communicating the position and movement of a reference vehicle relative to the earth. The control system (57) calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors (37, 43) and the receiver (45) and then commands flight control devices (33) on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.
Abstract:
There is provided an Unmanned Air Vehicle (UAV) including an engine and an airframe, including means for performing a deep stall maneouvre; at least one inflatable sleeve connected or connectable to the airframe, and means for inflating the sleeve during flight, wherein the inflated sleeve extends along the lower side of the airframe so as to protect same during deep stall landing. A method for operating an Unmanned Air Vehicle (UAV), including an engine and an airframe is also provided.
Abstract:
A modular automated air transport system comprising an unmanned autonomous aircraft having a selectively detachable control systems portion and a structural air frame portion, wherein the structural air frame portion contains an interior cargo hold, aerodynamic members having control surfaces and at least one propulsion device attached to the structural air frame portion; and wherein the control system portion includes a control computer for autonomously controlling the flight of said air transport system from one known location to a second known location.
Abstract:
A modular component set is configurable to form a plurality of flight capable platforms. A plurality of end pieces each has contiguously connected curved outer portions each longitudinally expanding from a tip to terminate at a blunt attachment face. Body members have opposed ends to receive the end piece blunt attachment face, and a rectangular shaped mid-portion having opposed walls. A plurality of task specific panels are each releasably connectable to one of the opposed walls. At least one of the body members with the end pieces joined at the opposed ends, and at least one of the task specific panels connected to one of the opposed walls form a minimum component set for each of the flight capable platforms.
Abstract:
A parafoil recovery system capable of autonomously controlling the descent profile of a payload to a recovery area and maneuvering the parafoil to execute a soft landing in the recovery area is disclosed. A descent profile management system determines wind speed and direction, altitude, heading, and position of the payload based on sensor input. The descent profile management system also determines a gliding flight path profile from the launch point to the desired recovery area. A flare and stall maneuver is executed at the end of the landing sequence by braking the parafoil to slow the vertical descent speed and groundspeed for a soft landing. The pitch attitude of the payload can be adjusted by the descent profile management system to prevent nose-first impact with the ground. The parafoil canopy is released from the payload upon touchdown to prevent the canopy from dragging the payload on the ground after landing.
Abstract:
The recoverable airborne instrument platform accurately determines its present position and uses this data to execute a predetermined flight plan and ultimately guide its descent to a predetermined landing site. This is accomplished by installing the instrument package payload in the aerodynamic exterior housing of the recoverable airborne instrument platform, which has a plurality of moveable control surfaces thereon to autonomously control the altitude, attitude and flight path of the recoverable airborne instrument platform. A navigation circuit contained within the aerodynamic housing determines the geographic location of the recoverable airborne instrument platform as well as the location of at least one predetermined recovery site. The determined position data is used to dynamically calculate a flight path which allows the guidance control circuit to both execute a predetermined flight plan and controllably descend the recoverable instrument platform to a selected predetermined recovery site. Upon arrival at the selected predetermined recovery site, the recoverable airborne instrument platform descends to a predetermined height over the selected predetermined recovery site and activates a parachute release mechanism to controllably descend to the selected predetermined recovery site.
Abstract:
착륙이 용이한 무인비행체가 제공되며, 무인비행체는 방향을 전환하는 프로펠러, 상기 프로펠러를 지지하는 프로펠러 타워, 상기 프로펠러 타워에 연결되어 있는 동체, 상기 동체의 수평축을 기준으로 좌우가 대칭이며, 상기 동체의 무게중심부에 한 쌍의 통공을 포함하는 주날개, 상기 한 쌍의 통공 내부에 각각 위치하는 한 쌍의 보조날개, 그리고 상기 한 쌍의 보조날개를 관통하며 상기 주날개에 고정되어 있는 기준축에 연결되어 있으며, 상기 한 쌍의 보조날개의 경사각도를 제어하는 액츄에이터(actuator)를 포함한다.