Abstract:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
Abstract:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
Abstract:
A method for fabricating a trilayered beam MEMS device includes depositing a sacrificial layer (310) on a substrate and depositing and removing a portion of a first conductive layer on the sacrificial layer (310) to form a first conductive microstructure (312); depositing a structural layer (322) on the first conductive microstructure (312); the sacrificial layer (310), and the substrate (300) and forming a via through the structural layer (322) to the first conductive microstructure (312); depositing a second conductive layer (336) on the structural layer (322) and in the via; forming a second conductive microstructure (324) by removing a portion of the second conductive layer (336), wherein the second conductive microstructure (324) electrically communicates with the first conductive microstructure (312) through the via; and removing a sufficient amount of the sacrificial layer (310) so as to separate the first conductive microstructure (312) from the substrate, wherein the structural layer (322) is supported by the substrate at a first end is freely suspended above the substrate at an opposing second end.
Abstract:
A movable, trilayered microcomponent (108) suspended over a substrate (102) is provided and includes a first electrically conductive layer (116) patterned to define a movable electrode (114). The first metal layer (116) is separated from the substrate (102) by a gap. The microcomponent (108) further includes a dielectric layer formed (112) on the first metal layer (116) and having an end fixed with respect to the substrate (102). Furthermore, the microcomponent (102) includes a second electrically conductive layer (120) formed on the dielectric layer (112) and patterned to define an electrode interconnect (124) for electrically communicating with the movable electrode (114).
Abstract:
The present invention is directed to a structure comprised of alternating layers of metal and sacrificial material built up using standard CMOS processing techniques, a process for building such a structure, a process for fabricating devices from such a structure, and the devices fabricated from such a structure. In one embodiment, a first metal layer is carried by a substrate. A first sacrificial layer is carried by the first metal layer. A second metal layer is carried by the sacrificial layer. The second metal layer has a portion forming a micro-machined metal mesh. When the portion of the first sacrificial layer in the area of the micro-machined metal mesh is removed, the micro-machined metal mesh is released and suspended above the first metal layer a height determined by the thickness of the first sacrificial layer. The structure may be varied by providing a base layer of sacrificial material between the surface of the substrate and the first metal layer. In that manner, a portion of the first metal layer may form a micro-machined mesh which is released when a portion of the base sacrificial layer in the area of the micro-machined mesh is removed. Additionally, a second layer of sacrificial material and a third metal layer may be provided. A micro-machined mesh may be formed in a portion of the third metal layer. The structure of the present invention may be used to construct variable capacitors, switches and, when certain of the meshes are sealed, microspeakers and microphones.
Abstract:
The invention relates to a method for manufacturing a micromechanical relay comprising the preparation of a substrate (10) having a fixed conductive electrode (18) in the substrate (10) or on the same. A sacrificial layer (26) and a conductive layer (32) are applied, the conductive layer (32) being structured as a movable counter electrode (39) in relation to the fixed electrode (18) in order to fix a lug structure. A contact segment (40) is applied, wherein the conductive layer (32) extends between an anchoring area (54) and a contact area (40) and is isolated with respect to the contact area. Subsequently, the sacrificial layer (26) is removed by etching to produce a movable segment and a segment fixed to the substrate (10) in the anchoring area (54) in the lug structure, which is fixed in such a way, that the etching access openings in the same are structured in such a way that the surface expansion of the etching access openings (66) to etch the sacrificial layer (26) increases from the area of the lug structure (54) fixed to the substrate (10) to the movable area of the lug structure.
Abstract:
A electromechanical relay device (100) comprising a source electrode (102), a beam (104) mounted on the source electrode at a first end and electrically coupled to the source electrode; a first drain electrode (112) located adjacent a second end of the beam, wherein a first contact (110) on the beam is arranged to be separated from a second contact (112) on the first drain electrode when the relay device is in a first condition; a first gate electrode (106arranged to cause the beam to deflect,to electrically couple the first contact and the second contact such that the device is in a second condition; and wherein the first and second contacts are each coated with a layer of nanocrystalline graphite.
Abstract:
The present invention generally relates to a MEMS device in which silicon residues from the adhesion promoter material are reduced or even eliminated from the cavity floor. The adhesion promoter is typically used to adhere sacrificial material to material above the substrate. The adhesion promoter is then removed along with the sacrificial material. However, the adhesion promoter leaves silicon based residues within the cavity upon removal. The inventors have discovered that the adhesion promoter can be removed from the cavity area prior to depositing the sacrificial material. The adhesion promoter which remains over the remainder of the substrate is sufficient to ad¬ here the sacrificial material to the substrate without fear of the sacrificial material delaminating. Because no adhesion promoter is used in the cavity area of the device, no silicon residues will be present within the cavity after the switching element of the MEMS device is freed.
Abstract:
The present invention relates to thin membranes (such as graphene windows) and methods of aligned transfer of such thin membranes to substrates. The present invention further relates to devices that include such thin membranes.
Abstract:
A nonvolatile nano-electromechanical system device is provided and includes a cantilever structure, including a beam having an initial shape, which is supported at one end thereof by a supporting base and a beam deflector, including a phase change material (PCM), disposed on a portion of the beam in a non-slip condition with a material of the beam, the PCM taking one of an amorphous phase or a crystalline phase and deflecting the beam from the initial shape when taking the crystalline phase.