MEMBRANE STRUCTURE ELEMENT AND METHOD FOR MANUFACTURING SAME
    83.
    发明公开
    MEMBRANE STRUCTURE ELEMENT AND METHOD FOR MANUFACTURING SAME 有权
    HERMTELLUNGSVERFAHRENDAFÜR的MEMBRANSTRUKTURELEMENT

    公开(公告)号:EP2001062A2

    公开(公告)日:2008-12-10

    申请号:EP07740161.0

    申请日:2007-03-28

    Abstract: It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.

    Abstract translation: 本发明提供可以容易地制造的膜结构元件,具有优异的绝缘性和高质量; 和膜结构元件的制造方法。 该制造方法用于制造膜结构元件,该膜结构元件包括由氧化硅膜形成的膜和通过支撑膜周边的一部分而将膜支撑在中空状态的基板。 该方法包括:通过等离子体CVD法在硅衬底2的表面上形成热收缩氧化硅膜13的成膜步骤; 进行热处理以使形成在基板1上的氧化硅膜13的热收缩的热处理步骤; 以及去除基板2的一部分的去除步骤,使得氧化硅膜13的膜相应部分作为相对于基板2的中空状态的膜被支撑以形成凹部4。

    Method for forming silicon germanium layers at low temperatures for controlling stress gradient
    84.
    发明公开
    Method for forming silicon germanium layers at low temperatures for controlling stress gradient 审中-公开
    形成在低温下的硅 - 锗层的方法,以确定所述电压梯度

    公开(公告)号:EP1801067A2

    公开(公告)日:2007-06-27

    申请号:EP06026404.1

    申请日:2006-12-20

    CPC classification number: B81C1/00666 B81C2201/0169

    Abstract: The present invention provides a method for controlling the average stress and the strain gradient in structural silicon germanium layers as used in micromachined devices. The method comprises depositing a single silicon germanium layer on a substrate and annealing a predetermined part of the deposited silicon germanium layer, whereby the process parameters of the depositing step and/or the annealing step are selected such that a predetermined average stress and a predetermined strain gradient are obtained in the predetermined part of the silicon germanium layer. Preferably a plasma assisted deposition technique is used for depositing the silicon germanium layer, and a pulsed excimer laser is used for local annealing, with a limited thermal penetration depth. The present invention provides a method for forming structural silicon germanium layers for surface micromachined structures at temperatures substantially below 400°C, which offers for example the possibility of post-processing micromachined structures on top of a substrate comprising electronic circuitry such as CMOS circuitry, without affecting the functionality and reliability of the electronic circuitry. More in particular, the present invention provides a method for forming structural silicon germanium layers at temperatures not exceeding 210°C, which allows the integration of silicon germanium based micromachined structures on substrates such as polymer films.

    Abstract translation: 本发明提供用于控制的平均应力和在作为微机械装置中使用的结构的硅锗层中的应变梯度的方法。 该方法包括沉积在衬底的单个硅锗层和退火所述沉积的硅锗层的预定部分,由此,沉积步骤和/或退火步骤的工艺参数选择的搜索做了预定的平均应力和预定的应变 梯度获得在硅锗层的预定部分。 优选地,等离子体辅助沉积技术用于沉积硅锗层,和脉冲准分子激光器用于本地退火,具有有限的热穿透深度。 本发明提供了用于在温度基本上低于400℃,它提供了对于实施例的可能性形成用于表面微加工结构的结构的硅锗层的方法后处理在包括电子电路基板的顶微机械结构:如CMOS电路,而不 关于影响的功能和电子电路的可靠性。 更特别地,本发明提供了一种温度不超过210℃,这允许在衬底上的基于锗硅微机械结构的集成结构形成硅锗层的方法:如聚合物膜。

    Fabrication of advanced silicon-based MEMS devices
    85.
    发明公开
    Fabrication of advanced silicon-based MEMS devices 有权
    Herstellung von动词desserten Silizium-basierten MEMS-Vorrichtungen

    公开(公告)号:EP1452481A2

    公开(公告)日:2004-09-01

    申请号:EP04100440.9

    申请日:2004-02-05

    Abstract: A micro-electro-mechanical (MEM) device and an electronic device are fabricated on a common substrate by fabricating the electronic device comprising a plurality of electronic components on the common substrate, depositing a thermally stable interconnect layer on the electronic device, encapsulating the interconnected electronic device with a protective layer, forming a sacrificial layer over the protective layer, opening holes in the sacrificial layer and the protective layer to allow the connection of the MEM device to the electronic device, fabricating the MEM device by depositing and patterning at least one layer of amorphous silicon, and removing at least a portion of the sacrificial layer. In this way, the MEM device can be fabricated after the electronic device on the same substrate.

    Abstract translation: 通过在公共衬底上制造包括多个电子部件的电子器件,在公共衬底上制造微电子机械(MEM)器件和电子器件,在电子器件上沉积热稳定的互连层,封装互连的 具有保护层的电子器件,在保护层上形成牺牲层,在牺牲层和保护层中的开孔,以允许MEM器件连接到电子器件,通过沉积和图案化制造MEM器件至少一个 非晶硅层,并且去除牺牲层的至少一部分。 以这种方式,可以在同一基板上的电子器件之后制造MEM器件。

    METHOD OF FORMING AN ELECTROMECHANICAL TRANSDUCER DEVICE
    87.
    发明申请
    METHOD OF FORMING AN ELECTROMECHANICAL TRANSDUCER DEVICE 审中-公开
    形成机电传感器装置的方法

    公开(公告)号:WO2011001293A2

    公开(公告)日:2011-01-06

    申请号:PCT/IB2010001950

    申请日:2010-06-15

    Abstract: A method of forming an electromechanical transducer device (200) comprises forming (500) on a fixed structure (210) a movable structure (203) and an actuating structure of the electromechanical transducer device, wherein the movable structure (203) is arranged in operation of the electromechanical transducer device (200) to be movable in relation to the fixed structure in response to actuation of the actuating structure. The method further comprises providing (504) a stress trimming layer (216) on at least part of the movable structure (203), after providing the stress trimming layer (216), releasing (506) the movable structure (203) from the fixed structure (210) to provide a released electromechanical transducer device (200), and after releasing the movable structure (203), changing (508) stress in the stress trimming layer of the released electromechanical transducer device such that the movable structure (203) is deflected a predetermined amount relative to the fixed structure (210) when the electromechanical transducer device (200) is in an off state.

    Abstract translation: 一种形成机电换能器装置(200)的方法包括在固定结构(210)上形成(500)可移动结构(203)和机电换能器装置的致动结构,其中可移动结构(203)布置在操作中 所述机电换能器装置(200)响应于所述致动结构的致动而相对于所述固定结构可移动。 该方法还包括在提供应力修剪层(216)之后,在可移动结构(203)的至少一部分上提供(504)应力修剪层(216),将可移动结构(203)从固定 结构(210)以提供释放的机电换能器装置(200),并且在释放可移动结构(203)之后,改变(508)释放的机电换能器装置的应力修剪层中的应力,使得可移动结构(203) 当机电换能器装置(200)处于关闭状态时相对于固定结构(210)偏转预定量。

    LOW TEMPERATURE CERAMIC MICROELECTROMECHANICAL STRUCTURES
    88.
    发明申请
    LOW TEMPERATURE CERAMIC MICROELECTROMECHANICAL STRUCTURES 审中-公开
    低温陶瓷微电子结构

    公开(公告)号:WO2010003228A1

    公开(公告)日:2010-01-14

    申请号:PCT/CA2009/000931

    申请日:2009-07-08

    Abstract: A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 35O°C, and potentially to below 25O°C, thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.

    Abstract translation: 提供了一种提供与硅CMOS电子器件兼容的微机电结构(MEMS)的方法。 该方法提供了将MEMS制造的集成电路的最大曝光限制在低于350℃并可能低于250℃的工艺和制造顺序,从而允许将MEMS器件直接制造到电子器件上,例如Si CMOS电路。 该方法进一步提供具有多个非导电结构层的MEMS器件,例如用小的侧向间隙分离的碳化硅。 这种碳化硅结构提供增强的材料性能,增加环境和化学弹性,同时还允许利用结构层的非导电材料来实现新颖的设计。 在形成MEMS元件(例如马达,齿轮,转子,平移驱动器等)中使用碳化硅是有益的,其中增加的硬度降低了操作期间这些元件的磨损。

Patent Agency Ranking