ENERGY SAVING SELF-CLEANING ROOF PAINT

    公开(公告)号:US20170335128A1

    公开(公告)日:2017-11-23

    申请号:US15158751

    申请日:2016-05-19

    Abstract: A paint composition for forming energy saving self-cleaning coatings includes water, a binder composition, a powder catalyst composition, a first pigment composition, a second pigment composition, and a fluoropolymer-composition. The binder composition includes a first acrylic resin having an average particle size from about 0.2 to 1 micron and a glass transition temperature less than about 10° C. The powder catalyst composition includes anatase titanium dioxide with a surface area from about 50 to 500 m2/g. It should be appreciated that anatase provides catalyst activity that is useful for providing the self-cleaning properties of the present embodiment. The first pigment composition includes rutile titanium dioxide which typically has low or no catalytic activity while the second pigment composition is different than the first pigment composition. Characteristically, the fluoropolymer-containing composition includes polyvinylidene fluoride and a second acrylic resin.

    Heat resistant silicone rubber composition

    公开(公告)号:US09803062B2

    公开(公告)日:2017-10-31

    申请号:US14891590

    申请日:2014-05-23

    Abstract: A heat resistant silicone rubber composition containing greater than or equal to 0.1 mass % each of titanium oxide and iron oxide is disclosed. The heat resistant silicone rubber composition can form a heat resistant silicone rubber suitable for use in a high temperature environment. A method of reducing formaldehyde and/or low molecular weight organopolysiloxane generated from a cured product of a heat resistant silicone rubber composition upon heating the cured product is also disclosed. The method comprises compounding greater than or equal to 0.1 mass % each of titanium oxide and iron oxide in the heat resistant silicone rubber composition. Generally, even when the cured product is heated to a high temperature, such as a temperature greater than or equal to 300° C., generation of formaldehyde and/or low molecular weight organopolysiloxane (e.g. D4, D5, and D6) from the cured product can be reduced.

Patent Agency Ranking