Abstract:
An electron accelerator includes a vacuum chamber having an electron beam exit window. The exit window is formed of metallic foil bonded in metal to metal contact with the vacuum chamber to provide a gas tight seal therebetween. The exit window is less than about 12.5 microns thick. The vacuum chamber is hermetically sealed to preserve a permanent self-sustained vacuum therein. An electron generator is positioned within the vacuum chamber for generating electrons. A housing surrounds the electron generator. The housing has an electron permeable region formed in the housing between the electron generator and the exit window for allowing electrons to accelerate from the electron generator out the exit window in an electron beam when a voltage potential is applied between the housing and the exit window.
Abstract:
A data reduction system for real time monitoring of radiation machinery measures the bremsstrahlung flux produced by the electron beam used to generate the desired radiation, and then corrects the measurement by corrective signals derived from the determination of other parameters, such as the energy of the electrons, the velocity of the product irradiated, the temperature of the device which measures the flux, and differences in sensitivity between a plurality of devices which measure the spacial and temporal distribution of the flux.
Abstract:
An electron beam source or generator is described for the treatment of materials, such as toxics, as influent in a reaction chamber. Preferred embodiments of the system include a source of an oxidizing agent in fluid communication with the influent. The oxidizing agent together with a dose of electron beam promotes reaction of the contaminant into less toxic forms so as to provide greatly enhanced destruction of contaminant that are otherwise resistant to oxidizing reactions.
Abstract:
The invention is a transportable and reconfigurable system and method designed for on-site conversion of toxic substances to nontoxic forms. The invention includes an electron beam generator, a reaction chamber and effluent post-processing modules mounted on a carrier for transporting the system from site to site.
Abstract:
A method for irradiating a workpiece, such as a strand, by charged particle, e.g. electron, bombardment is in accordance with the following steps:generating a charged particle beam at one end of an elongated vacuum chamber by thermionic emission from an elongated emitter,accelerating the ribbon beam toward a longitudinally extending, radially curved window member, such as a tube, extending tranversely across another end of the vacuum chamber, the window tube having a length related to the width of the ribbon beams,dynamically deflecting the ribbon beam periodically back and forth to define a sweep field which contains the curved window member therein in accordance with a common predetermined deflection driving signal,dynamically converging the deflected ribbon beam onto the active area of the curved window in consonance with the deflection of the beam, in accordance with a predetermined convergence driving signal phase related to the deflection driving signal, so that the ribbon beam sweeps continuously and substantially perpendicularly over substantially the entire active area of the window, and drawing the workpiece to be irradiated through a passageway defined adjacent to the active area of the window tube as the ribbon beams sweep over the active area, thereby to cause charged particle bombardment of the workpiece. A particle beam irradiator, preferably implemented as a coaxial electron ribbon beam and its irradiation method form aspects of the present invention.
Abstract:
The electron gun comprises an ionization chamber, adjacent to a high voltage chamber. In the wall common the both chambers provision is made for an extraction grid. On the opposite side, the ionization chamber comprises an outlet window for the electrons similar in shape to the extraction grid, and accompanied by a fine metallic foil. The high voltage chamber comprises a cathode brought to a high negative voltage. By giving the two grids the shape of similar parallel strips, a masking effect and a focusing effect are obtained at one and the same time which allows the efficiency of the electron gun to be increased.
Abstract:
A system for scanning a beam of charged-particles across a target is described which compensates for energy dispersion in the beam. A time-varying magnet with circular pole pieces is used to sweep the beam left to right. Two wedge-shaped magnet dipoles, one on each side of the center line are used to bend the beam parallel to the center line and compensate for beam energy dispersion.
Abstract:
Apparatus and method for producing a plurienergetic electron beam source. The apparatus includes a housing which functions as an anode, the same having an electron emission window covered by an electron-transparent grid, a cathode body mounted within the housing and electrically isolated therefrom, the spacing between the cathode body and grid being sufficient to permit a gas discharge to be maintained between them having a plasma region substantially thinner than the cathode sheath region. The method involves the simultaneous feeding of gas between a cathode body and an anode grid, applying voltages of about 10 kV to 20 kV and regulating the gas feed rate and the voltage to maintain a discharge condition of the character described above.
Abstract:
An electron beam window structure for broad area electron beam generators wherein a stream of electrons generated in an evacuated enclosure and extending over a broad area are passed through a thin window to a region of high pressure outside the enclosure. The structure is positioned between the metal window and the electron emission means of the electron beam generator and comprises a generally flat metal plate of high thermal conductance having closely spaced parallel slots extending over and covering the intended area of the electron beam. The bottom of each slot is disposed adjacent one surface of the plate and over its length and is provided with a row of closely spaced holes of the same diameter as the bottom width of the slot. The holes go through the remaining material leaving a small web between adjacent holes. The metal window is mounted on the slotted side of the plate while the side of the plate with the holes faces the emission means disposed in the evacuated enclosure. The plate preferably is provided with coolant flow passages for the continuous removal from the plate of significant amounts of heat generated by the impact of electrons on the plate and by electrons passing through the metal window.
Abstract:
In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated.