Abstract:
This application is directed to an apparatus for creating microwave radiation patterns for an object detection system. The apparatus includes a waveguide conduit having first slots at one side of the conduit and corresponding second slots at an opposite side of the conduit. The waveguide conduit is coupled to a microwave source for transmitting microwaves from the microwave source through the plurality of first slots. A plunger is moveably positioned in the waveguide conduit from one end thereof. The plunger allows the waveguide conduit to be tuned to generally optimize the power of the microwaves exiting the first slots. Secondary plungers are each fitted in one of the second slots to independently tune or detune microwave emittance through a corresponding first slot.
Abstract:
A method and device for processing a gas by forming microwave plasmas of the gas. The gas that is to be processed is set in a two or three co-axial vortex flow inside the device and exposed to a microwave field to form the plasma in the inner co-axial vortex flow, which subsequently is expelled as a plasma afterglow through an outlet of the device.
Abstract:
A method of generating a film during a chemical vapor deposition process is disclosed. One embodiment includes generating a first electrical pulse having a first pulse amplitude; using the first electrical pulse to generate a first density of radicalized species; disassociating a feedstock gas using the radicalized species in the first density of radicalized species, thereby creating a first deposition material; depositing the first deposition material on a substrate; generating a second electrical pulse having a second pulse amplitude, wherein the second pulse amplitude is different from the first pulse width; using the second electrical pulse to generate a second density of radicalized species; disassociating a feedstock gas using the radicalized species in the second density of radicalized species, thereby creating a second deposition material; and depositing the second plurality of deposition materials on the first deposition material.
Abstract:
A microwave generating system includes a modular architecture which is configurable to provide power output from under 1-kilowatt to over 100-kilowatts. The various power levels are achieved by combining the RF outputs of multiple RF power amplifiers in a corporate structure. The system can be used on any ISM band. Each system component incorporates a dedicated embedded microcontroller for high performance real-time control response. The components are connected to a high speed digital data bus, and are commanded and supervised by a control program running on a host computer.
Abstract:
A plasma etcher device (1) and corresponding method for decapsulating (i.e. removal of encapsulation or package of) an electronic or semiconductor sample (46), by means of microwave resonance induced plasma jet (44) based etching. The plasma jet is generated in a microwave resonance cavity (6) and ejected towards the sample (46). The proposed device and method employ a liquid masking layer (58) on top of the sample (46), to confine the plasma jet (44) and improve the etching accuracy.
Abstract:
A plasma deposition apparatus includes a waveguide conduit having a plurality of slots therein. The waveguide conduit is coupled to a microwave source for transmitting microwaves from the microwave source through the plurality of slots. One or more pipes have an outlet end positioned at each of the plurality of slots for transporting material from one or more material sources to the plurality of slots. The apparatus also includes a plasma chamber in communication with the waveguide tube through the plurality of slots. The plasma chamber receives through said plurality of slots microwaves from the waveguide tube and material to be melted or evaporated from the one or more pipes. The plasma chamber includes a plurality of magnets disposed in an outer wall of the plasma chamber for forming a magnetic field in the plasma chamber. The plasma chamber further includes one or more outlet openings for discharging plasma containing material to be deposited on a substrate.
Abstract:
A method and apparatus for producing a distributed plasma at atmospheric pressure. A distributed plasma can be produced at atmospheric pressure by using an inexpensive high frequency power source in communication with a waveguide having a plurality particularly configured couplers disposed therein. The plurality of particularly arranged couplers can be configured in the waveguide to enhance the electromagnetic field strength therein. The plurality of couplers have internal portions disposed inside the waveguide and spaced apart by a distance of 1/4 wavelength of the high frequency power source and external portions disposed outside the waveguide and spaced apart by a predetermined distance which is calculated to cause the electromagnetic fields in the external portions of adjacent couplers to couple and thereby further enhance the strength of the electromagnetic field in the waveguide. Plasma can be formed in plasma areas defined by gaps between electrodes disposed on the external portions.