Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
Abstract:
The device includes a body and a plurality of contact portions. The body is substantially planar. The plurality of contact portions are associated with the body so as to form ports. The plurality of contact portions are in electrical communication with the body. The port of each contact portion having an inside diameter substantially equal to ID1. The body and the contact portions are constructed of a conductive metallic material.
Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
Abstract:
A magnetic stand for a tablet device is disclosed. The magnetic stand is configured to rigidly hold a portion of the tablet device in place and to shield the magnetic field from adversely affecting nearby devices susceptible to strong magnetic fields. The shielding portion of the magnetic stand allows for significant increases in magnetic field strength when compared to similarly configured, unshielded products.
Abstract:
Various systems of an electronic device and methods for manufacturing the same are provided. In some embodiments, a routing assembly is provided that may not only route a cable along a circuit board, but that may also shield an electronic component or secure an electronic component to the circuit board. In some other embodiments, there is provided a mechanism for electrically coupling two components of an electronic device that may also be visually appealing in the context of other portions of the electronic device.
Abstract:
The present invention provides a multilayer rigid flexible printed circuit board including: a flexible region including a flexible film having a circuit pattern formed on one or both surfaces thereof and a laser blocking layer formed on the circuit pattern; and a rigid region formed adjacent to the flexible region and including a plurality of pattern layers on one or both surfaces of extended portions extended to both sides of the flexible film of the flexible region, and a method for manufacturing the same.
Abstract:
Various circuit board systems and methods of use and manufacture thereof are disclosed. A circuit board system can have a first circuit board including a substrate and a first component susceptible to electromagnetic interference carried by the substrate. The system can also include a second circuit board including a second substrate, and a shield engaged to the substrate of the first component, the shield at least partially covering the first component and being configured to protect the first component from electromagnetic interference, wherein the shield couples the substrate of the first circuit board to the substrate of the second circuit board.
Abstract:
A printed circuit board includes a front layer including frame ground regions on which connectors to be connected with external apparatuses or communication cables are mounted and which are connected with a ground, a signal ground region which is separated from the frame ground regions at the front layer, on which electronic devices configured to receive signals from the connectors are mounted, and which is connected with a ground, and a static electricity removal ground region separated from the frame ground regions and the signal ground region at the front layer, situated outside the frame ground regions, and connected with a ground.
Abstract:
Embodiments are generally directed to 3D high-inductive ground plane for crosstalk reduction. An embodiment of a printed circuit board includes a first signal trace and a second signal trace on a first layer, wherein the first signal trace and second signal trace are non-intersecting; a second layer below the first layer; a third layer below the second layer; and a three-dimensional (3D) ground plane, the 3D ground plane including a first plurality of segments on the third layer, a second plurality of segments on the second layer, and a plurality of metal vias to connect the first plurality of segments and the second plurality of segments in the ground plane.
Abstract:
A transmission line portion of a flat cable includes first regions and second regions connected alternately. In the first region, the transmission line portion is a flexible tri-plate transmission line including a dielectric element including a signal conductor, a first ground conductor including opening portions, and a second ground conductor which is a solidly filled conductor. In the second region, the transmission line portion is a hard tri-plate transmission line including a wide dielectric element including a meandering conductor, and a first ground conductor and a second ground conductor which are solidly filled conductors. A variation width of the characteristic impedance in the second region is larger than a variation width of the characteristic impedance in the first region.