Abstract:
The present invention provides a method for manufacturing doped mesoporous titanium dioxide (TiO_2) microsphere particles that can mass-produce mesoporous titanium dioxide (TiO_2) microsphere particles effectively doped with a metallic or non-metallic material. According to the manufacturing method, Ti precursor-based mesoporous microsphere particles, which have the size of the pores expanded, are impregnated with a solution containing a doping material precursor, so that the doping material precursor can be easily filled into the expanded pores of the Ti precursor-based mesoporous microsphere particles even if the molecular size of the doping material precursor such as zinc acetate is relatively large.
Abstract:
PURPOSE: A manufacturing method of a sodium vanadate nanowire is provided to simply manufacture a sodium vanadate nanowire in high quality single crystal by controlling the spreading thickness of a precursor solution, heat treatment temperature, and/or time. CONSTITUTION: A manufacturing method of a sodium vanadate nanowire comprises: a step of spreading a solution(20) containing sodium and vanadium on a substrate(30); a step of forming a sodium vanadate crystal core by heat-treating the substrate; and a step of heat-treating the substrate to grow the sodium vanadate nanowire from the sodium vanadate core. The solution contains 1-6 mols of vanadium per 1 mol of sodium. The substrate is an electric conductive substrate or electric nonconductive substrate. The spreading thickness of the solution is 10-1,000nm. The first heat treatment is conducted at 70-130 deg. C and the second heat treatment is conducted at 300-600 deg. C.
Abstract:
PURPOSE: A nano generator and a method for manufacturing the same are provided to change vibration to electric energy by using a nanostructure having excellent piezoelectric characteristic. CONSTITUTION: A nano electric generator includes a substrate, a first electrode(130), a second electrode(120) and a nanostructure(140). The first electrode is separated from the substrate. The second electrode is formed on the substrate. The nanostructure is formed between the substrate and the first electrode.
Abstract:
PURPOSE: A ZnSnO3/ZnO(zinc stannate/zinc oxide) nanowire in a core-shell structure is provided to have excellent piezoelectric characteristic by containing ZnSnO3 in a perovskite crystalline structure, and to apply a nano power-generating device to an environment-friendly field or within the human body. CONSTITUTION: A ZnSnO3/ZnO nanowire(500) includes a core-shell structure formed with a core(510) and a shell(520). The core contains ZnSnO3 and the shell contains ZnO. The ZnSnO3 has a perovskite crystalline structure, and the ZnO has a hexagonal crystalline structure. The ZnSnO3/ZnO nanowire is formed by a thermal chemical vapor deposition(thermal CVD) method. A producing method of the ZnSnO3/ZnO nanowire comprises the following steps: mixing ZnO powder, SnO powder, and carbon powder in a determined ratio; separately inserting the mixed powder and a substrate into a furnace; and heating the mixed powder for growing the ZnSnO3/ZnO nanowire on the substrate.
Abstract:
본 발명은 탑에미트형 질화물계 발광소자 및 그 제조방법에 관한 것으로서 탑에미트형 질화물계 발광소자는 기판, n형 클래드층, 활성층, p형 클래드층이 순차적으로 적층되어 있고, p형 클래드층 위에 전기적 및 광학적 특성을 향상시킬 수 있게 전도성을 갖는 소재로 30마이크로미터 이하의 폭을 갖는 크기의 셀을 상호 이격되게 격자형태로 형성된 격자셀층과, p형클래드층 표면을 보호할 수 있도록 적어도 셀 사이 영역을 커버할 수 있게 p형클래드층 위에 형성된 표면 보호층과, 표면 보호층과 격자셀층 위에 투명 전도성 소재로 형성된 투명 전도성 박막층을 구비한다. 이러한 탑에미트형 질화물계 발광소자 및 그 제조방법에 의하면 p형 클래드층과의 오믹접촉 특성이 개선되어 우수한 전류-전압 특성을 나타낼 뿐만 아니라, 높은 빛 투과성을 제공하여 소자의 발광효율을 높일 수 있다.
Abstract:
본 발명은 탑에미트형 질화물계 발광소자 및 그 제조방법에 관한 것으로서 탑에미트형 질화물계 발광소자는 기판, n형 클래드층, 활성층, p형 클래드층이 순차적으로 적층되어 있고, p형 클래드층 위에 전기적 및 광학적 특성을 향상시킬 수 있게 전도성을 갖는 소재로 30마이크로미터 이하의 폭을 갖는 크기의 셀을 상호 이격되게 격자형태로 형성된 격자셀층과, p형클래드층 표면을 보호할 수 있도록 적어도 셀 사이 영역을 커버할 수 있게 p형클래드층 위에 형성된 표면 보호층과, 표면 보호층과 격자셀층 위에 투명 전도성 소재로 형성된 투명 전도성 박막층을 구비한다. 이러한 탑에미트형 질화물계 발광소자 및 그 제조방법에 의하면 p형 클래드층과의 오믹접촉 특성이 개선되어 우수한 전류-전압 특성을 나타낼 뿐만 아니라, 높은 빛 투과성을 제공하여 소자의 발광효율을 높일 수 있다.
Abstract:
Disclosed is a method for controlling the growth crystallographic plane of metal oxide semiconductor which has a wurtzite crystallographic structure by using a thermal CVD method. In the disclosed method for controlling the growth crystallographic plane of the metal oxide semiconductor, the growth crystallographic plane can be controlled by growing the metal oxide semiconductor in a nonpolar direction by using a source material which includes a thermal decomposition material which reduces the surface energy of the polar surface of the metal oxide semiconductor.