Abstract:
PURPOSE: A method for manufacturing a metal electrode is provided to form a metal electrode with a narrow line and easily form a nano pattern in a wide area by using a nano imprinting process and a self assembled monolayer. CONSTITUTION: A method for manufacturing a metal electrode comprises the following steps. A pre-sacrificial film pattern is formed on a substrate using an imprinting process(S1). The pre-sacrificial film pattern is etched to form a sacrificial film pattern having a width narrower than that of the pre-sacrificial film pattern(S2). A self assembled monolayer pattern is selectively formed on the substrate exposed by the sacrificial film pattern(S3). The sacrificial film pattern is removed(S4). A metal electrode is selectively formed on the substrate exposed by the self assembled monolayer pattern(S5).
Abstract:
본 발명은 탄소나노튜브(Cabon Nano Tube, CNT)/전도성 고분자 박막의 이형 패턴을 가지는 플렉시블 투명전극 제조 방법에 관한 것으로, 더욱 상세하게는 기존의 포토리소그라피 공정을 사용하지 않고, 소프트 리소그라피 공정을 사용하여 전도성 고분자 박막 패턴을 형성한 뒤 자기 조립층(Self Assembled Monolayer, SAM) 처리를 실시하여 별도로 정렬할 필요없이 상부에 탄소나노튜브(CNT)를 형성시켜 이형의 패턴을 가지는 플렉시블 투명전극 제조 방법에 관한 것이다. CNT, 전도성 고분자, 이형 패턴, SAM
Abstract:
A method for producing a flexible transparent electrode is provided to maximize dispersibility with a small amount of carbon nanotube and pattern a polymer thin film without any damages by forming carbon nanotube within a carbon nanotube thin film. A method for producing a flexible transparent electrode comprises the following steps of: patterning a self-assemblage layer(21) on a substrate(11) through a soft lithography process; coating the substrate with a conductive polymer solution in order to form a conductive polymer layer(31) even on additional areas except of the self-assemblage layer; and forming a carbon nanotube layer(41) on the conductive polymer layer using a carbon nanotube solution.
Abstract:
PURPOSE: A fine patterning method of an inkjet by forming a guide line of a self assembled monolayer is provided to prevent a solid from spreading around a pattern by forming a self assembled monolayer as a guide line in forming the pattern. CONSTITUTION: In a fine patterning method of an inkjet by forming a guide line of a self assembled monolayer, a guide line is formed on a substrate with an SAM layer is formed(ST1). An ink jet pattern is formed between guide-lines(ST2). The SAM layer has different selectivity since the SAM layer has hydrophilic property, and hydrophobicity against the ink of the inkjet.
Abstract:
A flexible organic light emitting diode using a transparent organic electrode, a display panel using the same, and a method for manufacturing the same are provided to manufacture a diode having enhanced electron injection efficiency. A flexible organic light emitting diode using a transparent organic electrode(41) includes a flexible substrate(40), the transparent organic electrode, a metallic electrode(47), and an organic light emitting layer(48). The flexible substrate is made of transparent plastic. A pattern is formed in the top of the flexible substrate by a printing method. Electrons are injected into the transparent organic electrode. Holes are injected into the metallic electrode. The organic light emitting layer is deposited in the top of the transparent organic electrode and is positioned in the bottom of the metallic electrode. A polaron exciton is formed by the contact of the electrons and the holes.
Abstract:
발광소자및 이를제조하는방법을제공한다. 발광소자는, 제1 영역및 제2 영역을포함하는투명기판, 투명기판일 면에배치되는제1 투명전극, 제1 투명전극과이격되어마주하는제2 투명전극, 제1 및제2 투명전극들사이에배치되는유기발광층, 제1 및제2 투명전극들사이에서제2 영역을선택적으로마스킹하는보조전극및 투명기판의타 면에배치되며제2 영역을선택적으로마스킹하는광 경로변경구조물을포함한다.
Abstract:
본 발명의 일 실시예에 따른 유기발광 다이오드의 제조 방법은 기판 상에 애노드 전극을 형성하는 것, 상기 애노드 전극 상에 유기 발광층을 형성하는 것, 상기 유기 발광층 상에 캐소드 전극을 형성하는 것, 및 상기 캐소드 전극 상에 광산란 필름을 형성하는 것을 포함하되, 상기 광산란 필름은 이방성 결정으로 이루어진 다결정 유전체 물질이며, 상기 유전체 물질의 입자의 이방성 결정 성장에 의해서 상기 광산란 필름의 상면은 Ra가 50nm 이상인 표면 거칠기를 갖는다.
Abstract:
A method for manufacturing an organic scattering layer according to one embodiment of the present invention includes the steps of: providing a deposition device which includes a reaction chamber and a source chamber; fixing a substrate in the reaction chamber; supplying transfer gas of 25 to 50 degrees centigrade to the source chamber which is connected to the reaction chamber and supplies the evaporated organic material source; spraying the transfer gas and the evaporated organic material source to the reaction chamber through a shower head; and forming the organic scattering layer with a non-uniform surface by depositing organic particles formed by the molecule of the evaporated organic material source on the substrate.