Abstract:
본 발명의 목적은 표면에너지가 낮은 불소계 고분자, 이를 포함하는 불소계 고분자 조성물, 이를 포함하는 불소계 고분자막, 및 이들의 제조방법을 제공하는데 있다. 본 발명은 아크릴레이트계 공중합체 고분자를 제공하되, 특히 반복단위의 불화탄소수를 3 내지 5개로 한정하는 것을 구성의 특징으로 하고, 이를 통하여 고분자 및 이를 통하여 제조되는 고분자막의 표면 에너지가 현저히 낮아지는 효과가 있다. 또한, 본 발명의 고분자는 유리 등에 코팅되었을 때, 광투과도를 현저하게 개선하는 효과가 있고, 기계적 강도가 우수한 효과가 있다.
Abstract:
The present invention relates to a method for manufacturing a fine conductive pattern using metal nano ink for a laser pattern process. Particularly, the present invention relates to the method for forming a fine metal conductive pattern by a fine laser pattern which includes the step of manufacturing the fine metal conductive pattern by a sintering method by laser radiation on an insulation substrate coated with ink compositions for manufacturing a new fine laser pattern.
Abstract:
The present invention relates to a novel method for synthesizing graphene having excellent properties by using a metal conductive thin film and fine patterns manufactured by metal nanoparticles on which formation of a surface oxide film is suppressed. According to the present invention, graphene having large area and fine nanopatterns can be manufactured.
Abstract:
The present invention relates to a method for fabricating electronic devices using electrohydrodynamic (EHD) printing, which comprises the steps of: heating and stirring a first solution consisting of a metal precursor, an acid, an ammine, and a reducing agent to synthesize metal nanoparticles of which surface-oxide formation is controlled; making the metal nanoparticles formed in the previous step be dispersed in a non-aqueous solvent to prepare a conductive electrohydrodynamic-jet printable metal nano-ink composite; printing the conductive electrohydrodynamic-jet printable metal nano-ink composite on an insulating substrate; and heat-treating the insulating substrate on which the conductive electrohydrodynamic-jet printable metal nano-ink composite is printed.
Abstract:
The present invention relates to a method to fabricate nanopatterns using electrohydrodynimic-jet printing manufactured by heat-treating an insulating substrate having a printed metal nanoink composite for EHD printing and includes: a step (a) of heating and agitating a first solution including metal precursor, acid, ammine, and reducing agent and synthesizing metal nanoparticles having controlled surface oxide layer; a step (b) of dispersing the metal particles generated by step (a) into a non-aqueous solvent and fabricating the metal nanoink composite for EHD printing; and a step of allowing an electrohydrodynimic-jet printing device form the nanoink composite with a fine pattern.